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High order finite difference algorithms for solving the Schro ¨ dinger
equation in molecular dynamics

Raul Guantes and Stavros C. Farantosa)
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~Received 20 May 1999; accepted 20 September 1999!

The view of considering global Pseudospectral methods~Sinc and Fourier! as the infinite order limit
of local finite difference methods, and vice versa, finite difference as a certain sum acceleration of
the pseudospectral methods is exploited to investigate high order finite difference algorithms for
solving the Schro¨dinger equation in molecular dynamics. A Morse type potential for iodine
molecule is used to compare the eigenenergies obtained by a Sinc Pseudospectral method and a high
order finite difference approximation of the action of the kinetic energy operator on the wave
function. Two-dimensional and three-dimensional model potentials are employed to compare
spectra obtained by fast Fourier transform techniques and variable order finite difference. It is
shown that it is not needed to employ very high order approximations of finite differences to reach
the numerical accuracy of pseudospectral techniques. This, in addition to the fact that for complex
configuration geometries and high dimensionality, local methods require less memory and are faster
than pseudospectral methods, put finite difference among the effective algorithms for solving the
Schrödinger equation in realistic molecular systems. ©1999 American Institute of Physics.
@S0021-9606~99!30147-1#
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I. INTRODUCTION

Our understanding of basic molecular phenomena
strongly based on our ability to successfully simulate su
processes. In this respect, the solution of the Schro¨dinger
equation for realistic molecular systems constitutes the
of quantum molecular dynamics and the way to obtain r
able quantitative predictions. However, very useful physi
insight can be gained from the use of a causal time dep
dent picture where for instance the path of a molecular
counter or a vibrational motion can be traced in configurat
space. Therefore, much effort has been directed toward
development of methods which combine classical desc
tion with quantum corrections. Accurate wave packet pro
gation, together with knowledge of the proper classical orb
of the system, is one of the most complete views that we
have for a molecular process because exact numerical re
are supplemented by a very clear physical picture. Suc
program is accomplished by locating families of period
orbits which then can be used to assign initial conditions
the wave packets.1,2

Grid methods for the solution of the Schro¨dinger equa-
tion are nowadays one of the most powerful and exploi
tools both for the time independent@here mainly known as
discrete variable representation~DVR!# and time dependen
pictures. Concerning the latter, it was the introduction of
Fourier pseudospectral~PS! method which provided the nec
essary accuracy and computational efficiency to comp
with the traditional variational techniques and to make f
sible the task~for an excellent review see Ref. 3!. In the time

a!Also at Department of Chemistry, University of Crete, Iraklion 711 1
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dependent picture or wave packet propagation, the w
packet is advanced in time by an evolution operator which

the HamiltonianĤ is time independent, is an exponenti

function Û(t;Ĥ)5e2 iĤ t/\ ~from now on we take\51).
This can be approximated by, for instance, a polynom
expansion.4 The basic operation is therefore reduced to
evaluation of the action of the Hamiltonian operator onto
wave packet, Hˆ C. In long time propagation this operatio
has to be repeated many times, and thus, its efficiency
generally determine the computational cost of the proble
In practice, the wave function is often discretized in a g
using a collocation method and the Hamiltonian operato
represented by a matrix. If we considered only local ope
tors this matrix would be diagonal, but the Hamiltonian i
cludes the kinetic energy operator which is nonlocal in
coordinate domain. If the number of collocation points
each coordinatea is na , the Hamiltonian matrix will contain
of the order ofN3n nonzero elements, whereN is the total
number of collocation pointsN5)ana andn5(ana .

In the time independent picture one is concerned w
the diagonalization of the Hamiltonian matrix constructed
the same way to obtain the eigenvalues and eigenvec
Usually, an iterative procedure such as the Lanczos met
and variants5 is used for efficient diagonalization, whic
again involves products of the Hamiltonian matrix with ve
tors as the basic step. It is clear that important computatio
savings are possible when the Hamiltonian matrix is spa
or its action on the wave function can be calculated e
ciently.

A way to increase significantly the sparsity of the Ham
tonian matrix is by the use oflocal methods. Here, loca
means that the action of the kinetic energy operator~or the
7 © 1999 American Institute of Physics
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Laplacian! on the wave function is approximated by usin
only local information or neighboring grid points. Althoug
the derivative of a function is a local property, the wa
function is defined on the whole configuration space an
piecewise representation of a function by a local polynom
approximation, generally, converges more slowly than
spectral representation. In this work we want to investig
this convergence in problems of molecular dynamics, a
compare the numerical effort and accuracy of global a
local methods. We will exploit some recent advances in
nite difference algorithms which allow us to make a syste
atic comparison.

In Sec. II we will review briefly global pseudospectr
~PS! methods and local finite difference~FD! schemes by
using a very general formulation which puts them on
same footing. The relation between both approaches is
cussed in two aspects, i.e., how one can obtain certain
methods taking the infinite order limit of FD and, more im
portantly, how FD schemes can be obtained by applyin
given acceleration scheme to these PS methods. These
ferent points of view will allow us to gain much insight o
the nature of both approaches and on what is the best use
we can give them for the applications we have in mind.
simple one-dimensional system, namely the vibrational l
els of the I2 molecule, is investigated in Sec. III to show th
numerical convergence of FD to a Sinc PS method. In S
IV we will implement high order FD for the solution of th
time dependent Schro¨dinger equation in two- and three
dimensional model problems, obtaining correlation functio
and spectra from wave packet propagation, and compa
numerical accuracy and computational cost with the well
tablished Fourier method. Conclusions and directions to
ture work concerning the improvement of local methods
given in Sec. V.

II. THEORY: GLOBAL VERSUS LOCAL METHODS

A. Pseudospectral methods

Pseudospectral methods are traditionally introduced
global approximations to the true solution of a partial diffe
ential equationD(u)5 f , whereD is a differential operator,
in the expansion form:

u~x!'uN~x!5(
j 51

N

ajfN, j~x!. ~1!

$fN, j (x)% is a smooth basis of analytic functions in the d
main of interest which satisfies the appropriate bound
conditions. Then, once the class of basis functions have b
chosen, the remaining problem is to determine the coe
cientsaj . The general collocation method consists of enfo
ing the approximate solution to be exact on a set ofN grid
points, i.e., the equationD(uN)5 f is satisfied at a given se
of collocation points$xj ,1< j <N%. The main requirements
for the basis functions are that approximatio
( j 51

N ajfN, j (x) must converge rapidly to the true solutio
with the order of approximationN, and that, given the coef
ficientsaj , the determination ofbk, j

(m) , such that
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j 51

N

ajfN, j~x!DU
x5xk

5(
j 51

N

bk, j
(m)fN, j~xk!, ~2!

should be efficient. Also, it must be possible to conv
quickly between the coefficientsaj and the values of the sum
uN(xk) at the set of collocation points. Equation~2! for all xk

can be expressed as a matrix-vector multiplication

dmuN~x!

dxm
5Dm

•t, ~3!

where thedifferentiation matrixDm contains the coefficients
necessary for calculating themth derivative at the collocation
points andt is the column vector of dimensionN containing
the basis functions.

For periodic problems trigonometric expansions sati
all the above requirements~the efficiency due to the use o
the FFT algorithm!, while for nonperiodic problems a ver
successful type of basis functions is orthogonal polynom
of Jacobi type, with Chebychev and Legendre as the m
important special cases~see the discussion in Ref. 6!. Here
we will concentrate on two widely used PS methods:
Fourier method, mainly employed in the solution of the tim
dependent Schro¨dinger equation,3 and the Sinc method, very
much applied in the context of the DVR.7 Both methods are
closely related. Indeed, they give the same numerical ac
racy as we will see below.

In the Fourier PS method, orthogonal basis functions
the type

fN, j~x!5ei2p jx/L, j 52N/2, . . . ,0, . . . ,~N/221!,
~4!

are chosen, leading toN equally spaced collocation points
xk5kDx, (k51, . . . ,N), andL5NDx. The expansion coef-
ficients aj are then the discrete Fourier expansion coe
cients

aj5
1

N (
k51

N

u~xk!e
2 i2p jxk /L, ~5!

and, when this method is applied to the Schro¨dinger equa-
tion, the coefficients have the physical interpretation of
amplitude of the wave function in momentum space. The
requirements of computational efficiency are then satis
by use of the FFT algorithm for Eq.~5!. Since Fourier func-
tions are eigenfunctions of the differentiation matrix~DM!
with eigenvalues (i2p j /L)m, this matrix is automatically de-
termined and matrix-vector multiplication can be impl
mented by FFT too.

A very general formulation of the approximation pro
lem is obtained by usingcardinal basis functions. If the basis
functionsfN, j (x) in Eq. ~1! satisfy

fN, j~xk!5d j ,k , 1< j ,k<N, ~6!

they are called cardinal basis functions and the coefficient
Eq. ~1! are given simply by the values of the functionu at the
collocation pointsxk . Loosely speaking, different cardina
basis functions correspond to different representations of
Kronecker delta function and will have different propertie
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The approximation of the derivative of a functionuN(x) at
the collocation points can now be expressed as

dmuN~x!

dxm U
x5xk

5(
j 51

N

bk, j
(m)uN~xj !, ~7!

which is again a matrix-vector multiplication. The advanta
of such an approach is that the coefficientsbk, j

(m) can be cal-
culated analytically by taking the derivatives of the cor
sponding basis functions.

A cardinal basis function widely used in interpolatio
theory is the Sinc function,8 defined as Sinc(x)[sin(px)/
px. The Sinc function can be naturally generated from
Fourier basis discussed above, because it can be consid
as the Fourier transform of a Fourier basis function in m
mentum space~see for instance Ref. 9!:

Sinc@~x2xj !#5E
2`

`

e2 ipxf̃N, j~p!dp, ~8!

where

f̃N, j~p!5H ei2pxj p upu,p

0 upu.pJ . ~9!

Note that the optimum grid for interpolation with Sin
functions must also be equi-spaced and centered,xj5 j Dx,
( j 50,61,62, . . . ,6N/2). By the properties of the Fourie
transform, we see that the discrete version of Eq.~8! above
will span all the momenta up to the valuepmax5p/Dx and
therefore Fourier and Sinc pseudospectral methods are c
pletely equivalent in accuracy. The coefficientsbk, j

(m) which
give the approximation to themth derivative can be obtaine
by analytically differentiating the Sinc function, Sinc@(x
2xj )/Dx#. For the second derivative, which is the case
interest for the kinetic energy term in the Schro¨dinger equa-
tion, the coefficients read:

bk, j
(2)55

2~21! j 11

j 2Dx2
j 561,62, . . .

2
p2

3Dx2
j 50 6 . ~10!

Note that these coefficients decay asO(1/j 2). In com-
mon physical applications we want our wave function
decay exponentially withj ~for instance it can initially be a
Gaussian wave packet!, i.e., we want the boundary cond
tions u(x→`)50 to be satisfied. Therefore, the derivati
sum, Eq.~7!, will differ from the infinite series by an amoun
which decreases exponentially with the orderN, since con-
tributions of u(xj ) for large j will be negligible. We can
effectively compute the derivative with the accuracy of t
full infinite series ifN is sufficiently large. The ‘‘sufficient’’
value of N to reach the pseudospectral limit of course d
pends on the problem we are investigating. In quantum m
lecular dynamics, the number of grid points~number of
terms in the expansion! one should use for a sufficient sam
pling of the phase space volume is given by the requirem
of ‘‘one point per Planck cell,’’3 which leads to a relation
Downloaded 23 Dec 2002 to 139.91.254.18. Redistribution subject to A
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between the grid spacing and the maximum value of
wave numberk (p5k\) we want to represent:

Dx5
p

ukmaxu
. ~11!

This is precisely the same relation arising in the Sinc or
Fourier PS methods as discussed above. The maximum
mentum can be obtained from physical considerations, s
we want in general our wave function to be zero at su
ciently distant points of the grid,C(xmax)50, and we calcu-
late the potential energy atx5xmax and the momentum a
upmaxu5A2mV(xmax).

B. Finite difference methods

Finite difference methods are related to interpolation
ing Lagrange polynomials. Now our cardinal basis functio
can be chosen to have the general form:10,11

fN, j~x!5
1

cj
a~x!

vN~x!

x2xj
, 1< j <N, ~12!

wherea(x) is an analytic function in the real domain an
vN(x)5)k51

N (x2xk).The coefficientscj are chosen so tha
Eq. ~6! is satisfied, i.e.,

cj5a~xj !vN8 ~xj !, 1< j <N. ~13!

The simplest choice,a(x)51, corresponds to polyno
mial interpolation. For a general gridxk , k51, . . . ,N, the
functionsfN, j (x) are the Lagrange interpolating polynom
als. In the case thatx1521 andxN51, and the otherxk are
the zeros of some orthogonal polynomial, these basis fu
tions will produce orthogonal polynomial collocation met
ods @for instance, if we choose the interpolation points
xk5cos(kp/N) it gives the Chebychev method#. Other
choices ofa(x) will produce other methods: for example
a(x)5e2x is the Hermite collocation method, or ifa(x) is a
rational function we have a rational function collocatio
method. Also note that the Sinc method described in
previous subsection corresponds to a similar general form
fN, j (x) but with vN(x)5sin(p(x2xj)/Dx) anda(x)51.

To approximate the derivatives, i.e., to calculate the
efficientsbk, j

(m) in Eq. ~7!, we can proceed in the same wa
taking analytical derivatives of the corresponding interpol
ing polynomials. Explicit expressions for first and seco
derivatives have been given.12 For Lagrange polynomial ba
sis functions, instead of using the analytical expressions
found it preferable to employ an algorithm proposed
Fornberg.6,13 Fornberg was able to find recurrence relatio
for the derivatives of the Lagrange polynomials to obtain
coefficients for any order of derivative and arbitrarily
spacedgrids in a computationally very efficient way~only
four arithmetic operations for each coefficient!. This algo-
rithm then provides a very fast generation of the Hamilton
matrix for any type of grid and order of approximation~de-
gree of the Lagrange polynomial!. The systematic way with
which one can vary the order and the great flexibility
defining the grid points will prove to be quite advantageo

Note also that, because the interpolating polynomial
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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minimal degree is unique, differentiation@Eq. ~7!#, is exact if
uN(x) is a polynomial of degreeN or less.

C. Relations between FD and PS methods

That PS and FD approaches must be related can be
intuitively from the fact that PS methods also provide t
od
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exact derivatives of the interpolation polynomial passi
through the collocation points. We can be more specific a
take the limitN→` of the Lagrange interpolating polyno
mial. Consider an equi-spaced grid aroundx50 with spacing
Dx51 extended overN52M11 grid points. The Lagrange
polynomial will be:
fM , j~x!5
~x1M !•~x1M21!•••~x2 j 11!•~x2 j 21!•••~x2M !

~ j 1M !•~ j 1M21!•••~1!•~21!•••~ j 2M !
. ~14!
c-
to

x-
oly-

a-
the
Eq.

c-

q.
Starting from the central factors, this can be rearranged
the product)k51

M (12(x2 j )2/k2), which in the limit M
→` becomes

lim
M→`

fM , j~x!5)
k51

` S 12
~x2 j !2

k2 D 5
sin@p~x2 j !#

p~x2 j !
.

~15!

Therefore, the infinite order limit of FD gives a PS meth
with Sinc functions as the expansion basis functions.14,15

This has also been noted by Colbert and Miller7 in the con-
text of a discrete variable representation for the calcula
of reaction probabilities.

To understand better the character of both approac
we turn to the example of the time dependent Schro¨dinger
equation:

i
]C~x!

]t
5T̂C~x!1V̂C~x!. ~16!

The application of the kinetic energy operator at a giv
collocation point is

T̂C~xj !52
1

2m

]2C~x!

]x2 U
x5xj

. ~17!

If we use a Fourier basis for the expansion of the wa
function as in Eq.~4!, the kinetic energy operator will be

T̂C~xj !52
1

2m (
k52N/2

N/221 S i2pk

L D 2

ake
i2pkxj /L. ~18!

The spectrum in momentum space of the kinetic energy
erator is obtained by taking the Fourier transform and t
gives

T̃~k!5
1

2m

4p2

N2Dx2 (
k52N/2

N/221

k2ak . ~19!

We know that the operation on a component of the wa
function in momentum space is

T̂C̃~k!5
p̂2

2m
C̃~k!5

k2

2m
ak . ~20!

Thus, we see that all momenta until the valueukmaxu
5p/Dx are represented, by virtue of the sampling theore9
as

n

s,

n

e

p-
t

e

.

Now, if we use cardinal basis functions like Sinc fun
tions or Lagrange polynomials, we have an approximation
the kinetic energy operator given by Eq.~7!, therefore

T̂C~xk!52
1

2m (
j 52N/2

N/221

bk, j
(2)C~xj !. ~21!

Taking into account thatxj5xk1 j Dx, and using the fact
that the Fourier transform of a translated functionC(x
1Dx) is

eikDxC̃~k!, ~22!

we obtain the spectrum in momentum space

T̃~k!52
1

2m (
j 52N/2

N/221

bk, j
(2)eik j DxC̃~k!. ~23!

For simplicity we will consider a uniform grid withN an odd
number of grid points. Then, we have

T̃~k!52
1

2m S bk,0
(2)12(

j 51

M

bk, j
(2) cos~k jDx!D C̃~k!, ~24!

whereN52M11. The coefficients in the cosine series e
pansion are the FD weights in case we use Lagrange p
nomials or the weights given by Eq.~10! for Sinc functions.
We want to find the coefficients that give a good approxim
tion to the kinetic energy operator. Since we know that
exact spectrum in momentum representation is given by
~20!, we require that the trigonometric expansion ofk2 be-
tween@2kmax,kmax# equals the series expansion in Eq.~24!.
The trigonometric expansion fork2 is:

k25
kmax

2

3
1(

j 51

`
~21! j~2kmax!

2 cos~p jk/kmax!

~p j !2
. ~25!

Comparing with Eq.~24! we immediately see that

bk,0
(2)5

kmax
2

3
,

bk, j
(2)5

2~21! j 11kmax
2

p2 j 2
. ~26!

If we identify the maximum momentum with the grid spa
ing as in the Fourier or Sinc approaches, i.e.,kmax5p/Dx,
we find exactly the infinite order coefficients given in E
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~10!. Thus, the trigonometric expansion provides anot
method for evaluating the coefficients of any derivative.

The infinite order coefficients of a FD approach
equivalently the Sinc DVR expansion coefficients@Eq. ~10!#
decrease only asO(1/j 2) and therefore the approximatin
series to the derivative of the wave function converge slo
if C(x) is of the same order of magnitude as the coefficie
@i.e., we are above the aliasing limit,16 Eq. ~11!#. This means
that truncation of the Sinc PS method using less points t
the needed from the relation Eq.~11! will give very poor
results. If we want to improve the convergence of the trig
nometric series in order to be able to use less terms~less grid
points! in the approximation, we should use an accelerat
scheme, which in turn implies to multiply the terms in th
series by some acceleration weights. A classical examp
the Euler’s transformation.17

We can consider the series Eq.~24! above as the specia
case,z51, of the general alternating series:

SM5(
j 50

M

ajz
j , ~27!

with

a05bk,0
~2!

aj5bk, j
~2! cos~k jDx!, ~28!

wherebk, j
(2) are the Sinc weights defined in Eq.~10! ~note that

they alternate in sign!. Alternating series are ideal candidat
for linear acceleration techniques.18,19 Boyd has shown tha
theMth order finite difference approximation is equivalent
the accelerated series:19

SM
FD5(

j 50

M

cM , jajz
j , ~29!

with acceleration weights

cM ,05~6/p2!H (
j 51

M

1/j 2J
cM , j5~M ! !2/@~M2 j !! ~M1 j !! #, j 51, . . . ,M . ~30!

Here we stress two facts: first, the above accelera
weights can be shown to satisfy the required mathema
properties to be a robust and well behaved accelera
scheme, therefore, we expect high order FD to improve u
formly the convergence of the trigonometric series exp
sion. That this is indeed the case will be shown in the n
section. Second, it can be demonstrated that acceleratin
trigonometric series in this way corresponds to choosing
coefficients in Eq.~24!, so that the Taylor expansion of th
truncated trigonometric series coincides withk2 to the high-
est degree.14 Thus, FD is going to improve the accuracy
the spectrum mainly at lower values of the momentum.

III. APPLICATION TO IODINE MOLECULE

We applied both methods, PS and high order FD, to fi
the eigenvalues of the one dimensional Schro¨dinger equation
for the vibrational motion of the I2 molecule. The potential is
a Morse oscillator:
Downloaded 23 Dec 2002 to 139.91.254.18. Redistribution subject to A
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V~x!5D@e22ax22e2ax#1D, ~31!

whereD50.0224 a.u. anda50.9374 a.u. The model is ana
lytically solvable20 using confluent hypergeometric func
tions, and the exact expression for the eigenvalues is

En5kFn1
1

2
2

1

b S n1
1

2D 2G , ~32!

with k55.741 837 28631024 a.u. and b
5156.047 612 535. The reduced mass for the I2 is m
5119 406 a.u. This system has recently been studied c
putationally by Weiet al.21 as a test case for another loc
method, the Lagrange distributed approximating function
introduced by the authors. This is in fact a FD scheme~ap-
proximation by Lagrange polynomials! with weights multi-
plied by rapidly decreasing Gaussian functions to impro
further the convergence.

We used a total number of 80 grid points to discret
the Schro¨dinger equation with uniform spacing in the inte
val of @20.8,2.0#. From the values of the potential energ
we see that the maximum eigenvalue we can properly re
duce is n.30, and the optimum grid spacing is 0.051
Note, that with 80 grid points we have a spacingDx
50.035 and we are well below the aliasing limit for th
representative eigenvalues. The time independent Sc¨-
dinger equation is solved as usually22 by employing an ex-
pansion of the wave function in basis functions which a
orthogonal for different grid points, so that the potential e
ergy matrix is diagonal:

Vi , j5d i , jV~xi !, ~33!

and the kinetic energy matrix has the form

Tj ,i52
1

2m (
k51

M

bM ,k
(2) d u i 2 j u,k52

1

2m
bM ,u i 2 j u

(2) . ~34!

Here, the coefficientsbM ,k
(2) are either the infinite order coef

ficients, Eq.~10!, or the FD weights, which can be obtaine
in closed form by multiplying Eq.~10! with the acceleration
weights given by Eq.~30!. In this study the weights in FD
approximation are computed by using Fornberg’s algorith6

In the case thatM, the order of approximation, is equal to th
number of total grid points, we obtain the usual Sinc DV
method.

In Fig. 1 we present the fractional error (Eapprox./Eexact

21) for the eigenvaluesn55, 15 and 25 as a function of th
order of the approximationM. The Hamiltonian matrix was
diagonalized using a routine from the IMSL mathematic
library which is a hybrid of LR and QR algorithms. Th
order of approximation increases up to a value where
error becomes constant, so that the numerical error for
eigenvalues is mainly due to the diagonalization routine a
not in the approximation of kinetic energy operator.

As is clearly seen, even for the largest eigenvalue we
not need to use the full number of grid points to achieve
pseudospectral accuracy. In fact, for the eigenvaluen525
the pseudospectral limit is reached usingM527, while for
the Sinc method we should use at leastM568. We also note
that for the usual Sinc DVR scheme the Hamiltonian mat
in one dimension would be a dense matrix, while FD p
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vides a banded matrix with at most 2M11 nonzero elements
in each row. It is obvious that the sparsity of the Hamiltoni
matrix will increase in higher dimensions, making a sign
cant difference in computational cost between a FD appro
and a DVR scheme.

IV. MULTIDIMENSIONAL WAVE PACKET
PROPAGATION WITH FD

In quantum molecular dynamics simulations, since
introduction of the Fourier method, the two main problem
which make its implementation difficult in many realist
molecules are the complexity of the quantum phase sp
displayed by such molecules and its high dimensiona
which causes the numerical effort and the computer mem
requirements to be too large for the current computers.
of the difficulties come from the fact that the choice of t
grid is very restrictive in PS methods with fast transforms
matrix-vector multiplication~we must use a uniform grid
with a number of grid points equal to a power of a spec
number for the Fourier method, or the grid points must
chosen as the zeros of the Chebychev polynomials for
Chebychev technique!.

Apart from the wasted configuration space sampli
care must also be taken when the potential energy sur
~PES! has a complicated topography. The Fourier appro
imposes periodic boundary conditions, but in many sit
tions, like vibrational spectroscopy, the topic we are mai
concerned with, the correct boundary condition, is that
wave function vanishes at the boundaries of the grid~for
radial coordinates!. Thus, in many occasions one has to
sort to the use of complex absorbing potentials23 or to em-
ploy other tricks such as fast sine transforms24 which a priori
satisfy the box boundary conditions. A very convenient w
to impose these conditions, which also reduce apprecia
the size of the grid, is to use a cutoff value of the potent
Vc , as a criterion to choose the grid points, i.e., we disc

FIG. 1. The logarithm of the fractional error in the vibrational eigenenerg
(Eapprox./Eexact21) of I2 molecule versus the order of FD and Sinc DV
approximations. The vibrational levelsn55, 15 and 25 are examined usin
FD coefficients~solid lines! and infinite order coefficients~dashed lines!. In
the finite difference method centered equi-spaced grids are used (N52M
11).
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all those grid pointsxi for which V(xi).Vc .7 Then, the
wave function will be negligibly small for those configura
tions with energy nearVc . It is here where the FD metho
can be most useful, since it has complete flexibility in t
generation of the grid. One could of course use the Sinc
method in case we still use a uniform grid, but then t
Hamiltonian matrix is not very sparse and no fast transfo
exists to calculate the Laplacian of the wave function.

The purpose of this section is to show that high ord
FDs can be used for accurate numerical propagation of w
packets even for very long times. As expected from
simple system treated in the previous section, a numer
accuracy similar to that of the Fourier method can be
tained using sparse differentiation matrices. Moreover,
to this fact and the possibility of easily optimizing the grid
the way described above, for three or more dimensions
method requires appreciably less computational resou
than the FFT. Before proceeding to the discussion of
two- and three-dimensional examples, we wish to mak
few technical remarks: unless we intend to use dynamic
changing grids, the differentiation matrix~Hamiltonian op-
erator! is generated only at the beginning of the calculati
and used when needed for the time propagation. Becaus
the efficiency of the algorithm described by Fornberg13 the
generation of the differentiation matrix is very fast, so th
algorithm could also be used with adaptive or dynamica
changing grids. Moreover, we do not need to store the z
elements of the differentiation matrix and this also redu
appreciably the storage requirements in the compu
memory, a point which is crucial in high-dimensional sy
tems.

A. The 2D Contopoulos–Barbanis potential

We will study a two-dimensional system employed
several investigations in the past,25 mainly in the connection
between classical and quantum dynamics. One of us26 car-
ried out extensive studies of the periodic orbit structure
this system and its relation to quantum mechanics. The
tem is described by the Hamiltonian:

H5 1
2 ~px

21py
2!1 1

2 ~vx
2x21vy

2y2!2ex2y, ~35!

where the parameters arevx
250.9, vy

251.6, ande50.08.
The time dependent Schro¨dinger equation, Eq.~16!, was nu-
merically solved using a Chebychev expansion4 for the
propagation in time, while the action of the Hamiltonian o
erator on the wave function was evaluated with the F
method and with matrix-vector multiplication using FD,
order to study the convergence and compare the computa
times. The resulting vibrational spectrum was obtained
usual with the Fourier transform of the autocorrelation fun
tion of the wave packet

I ~E!5
1

2pE2`

`

exp~ iEt !^f~x,0!uf~x,t !&dt. ~36!

We propagated a Gaussian wave packet initially loc
ized on a 1:2 resonance periodic orbit at a high energyE
523 a.u., see Fig. 12b in Ref. 26!. It is interesting to plot the
wave packet in configuration space and compare the solu
of Schrödinger equation using the two methods. In bo

s
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cases we used a rectangular grid with 64 points in each
mension, andDx50.3175. We wanted to obtain a high res
lution for the spectrum (DE.0.056), and thus, we propa
gated the wave packet for 1024 time steps. Att51/4 of the
total time we took a snapshot of the wave function. In F
2~a! we show the wave function obtained with the FF
method~the potential energy contour is superimposed on
same plot at the mean energy of the wave packet!. In Figs.
2~b!, 2~c! and 2~d! we show the same wave packet obtain
with a second, fourth and seventh order finite difference
proximation, respectively. From Fig. 2 we can see that c
vergence of the wave function is approached with the
method, even for a wave packet quite spread in configura
space. Finer details reproduced by even higher order FD
proximations, however, will not affect very much the spe
trum, since, this is an average of the propagated wave fu
tion over the configuration space. The resulting spectra
shown in Fig. 3~here we omit the second order FD for th
sake of clarity, although the comparison is very poor as
pected!. Even with orderM57, the only appreciable differ
ence is in the intensities at high energies.

We recall that, a FD approximation is equivalent to
Taylor expansion series of the kinetic energy spectru
therefore, in the limit ofDx→0 we recover the exact spec
trum irrespectively of the order of the approximation. It
worthwhile to investigate then how the FD converges to
Fourier method as we increase the order as well as we
crease the grid spacing. We examine the differences of
central eigenvalue (E522.18) from that obtained with the
FFT method with 64 points in each dimension. When t
difference is less than the resolution in the power spect
the results are considered identical. Of course, for hig
eigenvalues we should increase further the order or decr
the grid spacing to converge to the desired resolution, but
general behavior is seen in Fig. 4 where we used 64, 80,
and 120 points (Dx50.3175, 0.2532, 0.2020 and 0.168
respectively!. It is seen that convergence in both directions
quite fast, although it is computationally cheaper to incre

FIG. 2. Snapshots of the wave packet att528 a.u.~1/4 of total propagation
time! with a rectangular grid and 64 grid points in each dimension.~a! FFT
method;~b! FD with M52 ~second order!; ~c! FD 4th order;~d! FD 7th
order.
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the order of the approximation and take less grid points t
to increase the number of grid points~by increasing the orde
by one we should add two more grid points to evaluate
Laplacian, but we should increaseN by about 20 points at
low order to get the same reduction in the error!.

B. The 3D Contopoulos–Barbanis potential

Now, we extend the model potential to three dimensio

V~x,y,z!5 1
2 ~vx

2x21vy
2y21vz

2z2!2ex2y2hx2z. ~37!

The additional parameters have the valuesvz
250.4 andh

50.01.27 The initial Gaussian wave packet is put on a pe
odic orbit which is a 1:2:2 resonance among the three
grees of freedom. The family of this periodic orbits tur
from stable to complex unstable. The same potential w
used by one of us27 to study quantum mechanically the ph
nomenon of complex instability, which was also found

FIG. 3. Power spectra obtained from the correlation function of the w
packet shown in Fig. 2. FFT~solid line!, FD 4th order~dashed line! and FD
7th order~dotted line!.

FIG. 4. Differences in energy with respect to the central eigenvalueE
522.18) in the FFT spectrum of Fig. 3 as a function of the order of
proximation. Rectangular grids with 64, 80, 100 and 120 points were u
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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molecules such as HCN and acetylene.28 We will use the
same initial conditions for the wave packet as those use
Ref. 27.

Here, we are interested in comparing both numeri
methods~FFT and FD! from the computational point o
view, and in studying the application of optimized grids
the time dependent Schro¨dinger equation. We chose a pote
tial cutoff value ofVc515 a.u. after doing some test calc
lations to verify that this value provides the proper bound
conditions for the wave function in the range of energies
which we are interested. Even if in this simple model t
topography of the potential is not complicated~it is like two
harmonic oscillators weakly coupled! the reduction in the
number of grid points is significant. As seen from Table I
is about a factor of 2, which, combined with the sparsity
the differentiation matrix, allows us to reduce the compu
tion time by about a factor of 3. Here, we used for the FF
rectangular grid with the edges tangent to the potential cu
value, and convergence means that even the highest va
of the spectrum are reproduced to the accuracy of the s
tral resolution which in this case is 0.038 a.u.

V. CONCLUSIONS

We have investigated the implementation of high ord
FD methods to solve simple models of molecular potent
for the time independent and time dependent Schro¨dinger
equation. In the past, FD was mainly considered at l
order29 which of course gave poor results when it was co
pared with a PS scheme. However, investigations of so
high order FD calculations have appeared in the literatu30

such as the calculations of eigenvalues. Here, we empha
two facts: first, thanks to the algorithm developed
Fornberg,13 FD weights are easily obtained recurrently f
any order and any grid spacings, without the necessity
solving any set of linear equations as previously. This s

TABLE I. The total number of grid points~N! and CPU times in minutes
(8) and seconds (9) for propagating a 3D wave packet with FFT and va
able order~M! finite difference approximations. The number of grid poin
necessary to compute the derivatives in the FD method is 2M11, equi-
spaced and centered at each grid point. Optimized grid is that in which
selected grid points correspond to potential values less than the cutoff v
Vc515 a.u. The computations were carried out with a PC Pentium II at
MHz and memory of 512 MBytes.

Rectangular grid
~N! Optimized grid

Order
~M! CPU-Time FFT

32 256 15 972 3 43839
5 648549
7 88849
9 1608289 Converged

65 536 33 180 2 958469 674849
3 2168469
5 2858399 Converged
7 2888569

115 200 59 214 1 1498149
2 248859
3 2898309 Converged
5 4688209
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plifies considerably the problem of constructing the Ham
tonian matrix in a DVR type calculation or the Hamiltonia
operator for the time dependent problem. This also allow
us to check systematically the convergence, so that res
can be obtained with any desired accuracy.

The common frame in which PS and local methods c
be placed, starting from approximations to the solution
partial differential equations using cardinal basis functio
also allows us to explore the relations between the two m
ods. The ultimate reason why we do not need a very h
order FD scheme to obtain the same accuracy as the Fo
or Sinc PS techniques is that FD can be seen as a robust
acceleration procedure of the Sinc PS method.19 This was
shown by a simple one-dimensional example in Sec. III.
the previous section we demonstrated the usefulness of
order FD applied to quantum molecular dynamics problem
with a considerable reduction in the computation time in
3D case.

FD have additional advantages, like the sparsity of
Hamiltonian matrix. They are very easily vectorizable a
ideal for parallel computation. Although we confined ou
selves here to the use of uniform grids for comparison w
the Fourier and Sinc methods, they can be used without
additional modification in irregularly spaced grids~we ob-
tained preliminary results in the one-dimensional harmo
and Morse oscillators using different grid distributions!.
They can also be combined with different weight functio
~like Gaussian windows, an approach that leads
wavelets31! to improve the convergence of the local method
Although, high order FD works well for long time propaga
tion, they could also be used in combination with filter d
agonalization techniques,32 where only short time wave
packet propagation is needed and we can decrease the
of the FD approximation without the sacrifice of accuracy

Here, we treated simple models but in a companion
per we apply high order FD approximations to propag
wave packets and extract the eigenfunctions on a real
molecular potential representing the inversion dynamics
Ar3 van der Waals complex.33 Work on higher than three
dimensional problems is in progress and will be published
the future.

ACKNOWLEDGMENT

R. Guantes gratefully acknowledges financial supp
from a European Union TMR grant (FMRX8CT89780101).

1S. C. Farantos, Int. Rev. Phys. Chem.15, 345 ~1996!.
2S. C. Farantos, Comput. Phys. Commun.108, 240 ~1998!.
3R. Kosloff, in Dynamics of Molecules and Chemical Reactions, edited by
R. E. Wyatt and J. Z. H. Zhang~Marcel Dekker, New York, 1996!.

4R. Kosloff, Annu. Rev. Phys. Chem.45, 145 ~1994!.
5~a! C. Lanczos, J. Res. Natl. Bur. Stand.45, 58 ~1950!; ~b! C. Iung and C.
Leforestier, J. Chem. Phys.102, 8453~1995!; ~c! R. E. Wyatt,ibid. 103,
8433~1995!; ~d! R. B. Lehoucq, D. C. Sorensen, and C. Yang,Solution of
Large Scale Eigenvalue Problems with Implicity Restarted Arnoldi Me
ods ~SIAM, Philadelphia, 1998!.

6B. Fornberg and D. M. Sloan, Acta Numerica1994, 203.
7D. T. Colbert and W. H. Miller, J. Chem. Phys.96, 1982~1992!.
8F. Stenger, SIAM Rev.23, 165 ~1981!.
9R. N. Bracewell,The Fourier Transform and Its Applications~McGraw
Hill, New York, 1986!.

e
e,
0

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



,

s

s

tt.

mp.

, J.

Rev.

.

10835J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Finite difference algorithms
10B. D. Welfert, SIAM ~Soc. Ind. Appl. Math.! J. Numer. Anal.34, 1640
~1997!.

11C. Schwartz, J. Math. Phys.26, 411 ~1985!.
12A. Solomonoff and E. Turkel, J. Comp. Physics81, 239 ~1989!.
13B. Fornberg, Math. Comput.51, 699 ~1988!.
14B. Fornberg, SIAM~Soc. Ind. Appl. Math.! J. Numer. Anal.27, 904

~1990!.
15B. Fornberg,A Practical Guide to Pseudospectral Methods, Cambridge in

Applied and Computational Mathematics~Cambridge University Press
Cambridge, 1998!, Vol. 1.

16W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling,Nu-
merical Recipes~Cambridge University Press, Cambridge, MA, 1986!.

17J. Mathews and R. L. Walker,Mathematical Methods of Physic
~Addison-Wesley, 1970!, pp. 53–55.

18J. P. Boyd, J. Comp. Physics103, 243 ~1992!.
19J. P. Boyd, Comput. Methods Appl. Mech. Eng.116, 1 ~1994!.
20I. I. Gol’dman and V. D. Krivchenkov,Problems in Quantum Mechanic

~Dover, New York, 1993!, pp. 217–218.
21G. W. Wei, D. S. Zhang, D. J. Kouri, and D. K. Hoffman, Phys. Rev. Le

79, 775 ~1997!.
22~a! J. V. Lill, G. A. Parker, and J. C. Light, Chem. Phys. Lett.89, 483

~1982!; ~b! J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys.82,
1400 ~1985!; ~c! S. E. Choi and J. C. Light,ibid. 92, 2129~1990!.

23~a! C. Leforestier and R. E. Wyatt, Chem. Phys. Lett.78, 2334~1983!; ~b!
Downloaded 23 Dec 2002 to 139.91.254.18. Redistribution subject to A
D. Neuhauser and M. Baer, J. Chem. Phys.90, 4351~1989!; ~c! U. V. Riss
and H. D. Meyer, J. Phys. B28, 1475~1995!.

24M. Braun, S. A. Sofianos, D. G. Papageorgiou, and I. E. Lagaris, J. Co
Physics126, 315 ~1996!.

25~a! G. Contopoulos, Astron. J.75, 96 ~1970!; ~b! M. J. Davis and E. J.
Heller, J. Chem. Phys.75, 246 ~1981!; ~c! R. C. Brown and R. E. Wyatt,
ibid. 82, 4777 ~1984!; ~d! C. C. Martens and G. S. Ezra,ibid. 86, 279
~1987!.

26M. Founargiotakis, S. C. Farantos, G. Contopoulos, and C. Polymilis
Chem. Phys.91, 1389~1989!.

27G. Contopoulos, S. C. Farantos, H. Papadaki, and C. Polymilis, Phys.
E 50, 4399~1994!.

28~a! S. C. Farantos and M. Founargiotakis, Chem. Phys.142, 345 ~1990!;
~b! R. Prosmiti and S. C. Farantos, J. Chem. Phys.103, 3299~1995!.

29~a! E. A. McCullough and R. E. Wyatt, J. Chem. Phys.51, 1253~1969!;
~b! A. Askar and A. S. Cakmac,ibid. 68, 2794~1978!.

30G. C. Groenenboom and H. M. Buck, J. Chem. Phys.92, 4374~1990!.
31G. W. Wei, S. C. Althorpe, D. J. Kouri, and D. K. Hoffman, J. Chem

Phys.108, 7065~1998!.
32~a! M. R. Wall and D. Neuhauser, J. Chem. Phys.102, 8011~1995!; ~b! V.

Mandelshtam and H. S. Taylor,ibid. 106, 5085~1997!; ~c! R. Chen and H.
Guo, ibid. 105, 1311~1996!.

33R. Guantes, A. Nezis, and S. C. Farantos, J. Chem. Phys.111, 10836
~1999!, following paper.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


