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The view of considering global Pseudospectral metl{&isc and Fourieras the infinite order limit

of local finite difference methods, and vice versa, finite difference as a certain sum acceleration of
the pseudospectral methods is exploited to investigate high order finite difference algorithms for
solving the Schidinger equation in molecular dynamics. A Morse type potential for iodine
molecule is used to compare the eigenenergies obtained by a Sinc Pseudospectral method and a high
order finite difference approximation of the action of the kinetic energy operator on the wave
function. Two-dimensional and three-dimensional model potentials are employed to compare
spectra obtained by fast Fourier transform techniques and variable order finite difference. It is
shown that it is not needed to employ very high order approximations of finite differences to reach
the numerical accuracy of pseudospectral techniques. This, in addition to the fact that for complex
configuration geometries and high dimensionality, local methods require less memory and are faster
than pseudospectral methods, put finite difference among the effective algorithms for solving the
Schralinger equation in realistic molecular systems. 1899 American Institute of Physics.
[S0021-960629)30147-1

I. INTRODUCTION dependent picture or wave packet propagation, the wave
packet is advanced in time by an evolution operator which, if

Our understanding of_ba5|c moalecular phenomena 'She HamiltonianA is time independent, is an exponential
strongly based on our ability to successfully simulate Sucr}unction U(t'ﬂ)—e*‘ﬁ“ﬁ (from now on we takefi—1)

processes. In this respect, the solution of the Sdihger ) ) ) )
n:|'h|s can be approximated by, for instance, a polynomial

equation for realistic molecular systems constitutes the ai . i s
of quantum molecular dynamics and the way to obtain re"_expansmri‘. The basic operation is therefore reduced to the
n of the action of the Hamiltonian operator onto the

able quantitative predictions. However, very useful physicafvaluation of : . ! :
insight can be gained from the use of a causal time deperfYave packet, F. In long time propagation this operation

dent picture where for instance the path of a molecular en@s t0 be repeated many times, and thus, its efficiency will
counter or a vibrational motion can be traced in configuratiordénerally determine the computational cost of the problem.
space. Therefore, much effort has been directed toward tH8 Practice, the wave function is often discretized in a grid
development of methods which combine classical descriptsing a collocation method and the Hamiltonian operator is
tion with quantum corrections. Accurate wave packet propaf€presented by a matrix. If we considered only local opera-
gation, together with knowledge of the proper classical orbitdors this matrix would be diagonal, but the Hamiltonian in-
of the system, is one of the most complete views that we cafludes the kinetic energy operator which is nonlocal in the
have for a molecular process because exact numerical resuigordinate domain. If the number of collocation points in
are supplemented by a very clear physical picture. Such @ach coordinate is n,, the Hamiltonian matrix will contain
program is accomplished by locating families of periodicOf the order ofNXn nonzero elements, wheltis the total
orbits which then can be used to assign initial conditions fomumber of collocation pointdl=II,n, andn=X n,,.
the wave packets? In the time independent picture one is concerned with
Grid methods for the solution of the Schiinger equa- the diagonalization of the Hamiltonian matrix constructed in
tion are nowadays one of the most powerful and exploitedhe same way to obtain the eigenvalues and eigenvectors.
tools both for the time independeftiere mainly known as Usually, an iterative procedure such as the Lanczos method
discrete variable representatidBVR)] and time dependent and variants is used for efficient diagonalization, which
pictures. Concerning the latter, it was the introduction of theagain involves products of the Hamiltonian matrix with vec-
Fourier pseudospectréPS method which provided the nec- tors as the basic step. It is clear that important computational
essary accuracy and computational efficiency to competsavings are possible when the Hamiltonian matrix is sparse
with the traditional variational techniques and to make fea-or its action on the wave function can be calculated effi-
sible the tasKfor an excellent review see Ref).3n the time  ciently.
A way to increase significantly the sparsity of the Hamil-
dAlso at Department of Chemistry, University of Crete, Iraklion 711 10, tonian matrix is by the use abcal methods. Here, local
Crete, Greece means that the action of the kinetic energy operéborthe
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only local information or neighboring grid points. Although — 2 ajdn,j(X)

Laplacian on the wave function is approximated by using gm ( N )
dx™\ j=1

N

=2 bWy (%), )
the derivative of a function is a local property, the wave Xy =1
function is defined on the whole configuration space and a - ) .
piecewise representation of a function by a local polynomiaflould be efficient. Also, it must be possible to convert
approximation, generally, converges more slowly than Jluickly between the coeff|C|_ena§ a}nd the valges of the sum
spectral representation. In this work we want to investigatéJN(Xk) at the set of coIIocatlo.n points. Equgt@) for all X
this convergence in problems of molecular dynamics, an&an be expressed as a matrix-vector multiplication
compare the numerical effort and accuracy of global and d™uy(x)
local methods. We will exploit some recent advances in fi- —Nsz.t, 3
nite difference algorithms which allow us to make a system- dx™

atic comparison. where thedifferentiation matrixD™ contains the coefficients

(Pgmmstekf ) d” Wi dWII” relv:‘?r:,i\; bg?f?yr g;c&t;al:l))pseﬁd;spe(gral necessary for calculating tmth derivative at the collocation
cthods and loca e diere schemes by points and is the column vector of dimensidi containing

using a very general formulation which puts them on thethe basis functions.

same fopting. The relatiqn between both appro_aches i_s dis- For periodic problems trigonometric expansions satisfy
Custie% |r1[ t\li\'lo atshpef:t;s_, .'t'e" t(wjowl_on_te iaQDObté:jm certain Pgl the above requirementghe efficiency due to the use of
met otls a IngFDe |nh|n| € oraer tl)ml gt _ gnb' mor:a M the FFT algorithmy, while for nonperiodic problems a very
portantly, now FL schemes can be obtained by applying &,,.cegsfy| type of basis functions is orthogonal polynomials
given acceleration scheme to these PS methods. These d f Jacobi type, with Chebychev and Legendre as the most

ferent points of view will allow us to gain ”_‘“Ch insight on important special casdsee the discussion in Ref).@Here
the nature of both approaches and on what is the best use ”Wé will concentrate on two widely used PS methods: the
we can give them for the applications we have in mind. A .

. . . L Fourier method, mainly employed in the solution of the time
simple one-dimensional system, namely the vibrational lev

. . . dependent Schdinger equatior,and the Sinc method, very
els of t_helb molecule, is 'anESDt'?atedS'.n Sgg i tt% SQO\IN tge much applied in the context of the DVRBoth methods are
humericar convergence o 0 & oInc method. n eCClosely related. Indeed, they give the same numerical accu-
IV we will implement high order FD for the solution of the racy as we will see below
time dependent Schdinger equation in two- and three- i

. : . . . In the Fourier PS method, orthogonal basis functions of
dimensional model problems, obtaining correlation function

X=

) Yhe type
and spectra from wave packet propagation, and comparing
numerical accuracy and computational cost with the well es- ¢y ;(x) =€/, j=—N/2,...,0,...(N/2—1),
tablished Fourier method. Conclusions and directions to fu- (4

ture work concerning the improvement of local methods are . . .
given in Sec. V. are chosen, leading td equally spaced collocation points,

xx=kAX, (k=1,... N), andL=NAx. The expansion coef-
ficients a; are then the discrete Fourier expansion coeffi-
cients
Il. THEORY: GLOBAL VERSUS LOCAL METHODS N
1 o
A. Pseudospectral methods =y > u(xy) e 2mxdt (5
k=1
Pseudospectral methods are traditionally introduced as _ _ _ -
global approximations to the true solution of a partial differ- and, when this method is applied to the Sdfinger equa-

ential equatiorD(u)=f, whereD is a differential operator, tion, the coefficients have the physical interpretation of the
in the expansion form: amplitude of the wave function in momentum space. The last

requirements of computational efficiency are then satisfied
by use of the FFT algorithm for E¢5). Since Fourier func-

U(X)MJN(X)ZZ1 ajén,j(x). (1) tions are eigenfunctions of the differentiation mattxM)

8 with eigenvaluesi@j/L)™, this matrix is automatically de-

{¢nj(X)} is a smooth basis of analytic functions in the do-termined and matrix-vector multiplication can be imple-
main of interest which satisfies the appropriate boundarynented by FFT too.
conditions. Then, once the class of basis functions have been A very general formulation of the approximation prob-
Chosen, the remaining prob|em is to determine the Coeffil.em |S obtained by USingardina:l basis functiondf the basis
cientsa, . The general collocation method consists of enforc-functions ¢y ;(x) in Eq. (1) satisfy
ing the approximate solution to be exact on a seNagrid _ .
points, i.e., the equatioP(uy)=f is satisfied at a given set PN = 0 1=]k=N, ©
of collocation points{x; ,1<j<N}. The main requirements they are called cardinal basis functions and the coefficients in
for the basis functions are that approximationsEqg.(1) are given simply by the values of the functiomt the
Eszlajq’aN,j(x) must converge rapidly to the true solution collocation pointsx,. Loosely speaking, different cardinal
with the order of approximatiofV, and that, given the coef- basis functions correspond to different representations of the
ficientsa;, the determination ob(kf‘]) , such that Kronecker delta function and will have different properties.

N

Downloaded 23 Dec 2002 to 139.91.254.18. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Finite difference algorithms 10829

The approximation of the derivative of a functio(x) at  between the grid spacing and the maximum value of the

the collocation points can now be expressed as wave numbek (p=k#) we want to represent:
dMun(x) ! 7
v 2, biPun(x)), @) A el (v
X X=Xk ]_1

This is precisely the same relation arising in the Sinc or the
which is again a matrix-vector multiplication. The advantageFourier PS methods as discussed above. The maximum mo-
of such an approach is that the coefﬂuebﬁ‘ can be cal- mentum can be obtained from physical considerations, since
culated analytically by taking the derivatives of the corre-we want in general our wave function to be zero at suffi-
sponding basis functions. ciently distant points of the gridV (x,,) =0, and we calcu-

A cardinal basis function widely used in interpolation late the potential energy at= Xy, and the momentum as
theory is the Sinc functiofi,defined as Sino()=sin(mx)/ [Pmad = V2MV(Ximay -
7X. The Sinc function can be naturally generated from the
Fourier basis discussed above, because it can be considered
as the Fourier transform of a Fourier basis function in MO-5 Finite difference methods

mentum spacé¢see for instance Ref.)9
Finite difference methods are related to interpolation us-

. Covie |7 e ing Lagrange polynomials. Now our cardinal basis functions
Sind (x=x)] f e Pni(p)dp, ®  can be chosen to have the general fafrit

1 wn(X) .
where dnj(X)= —a(x) xhix ., 1<j=N, (12
- e?mP |p|<ar J |
bnj(p)= 0 || 9 where a(x) is an analytic function in the real domain and
T

wN(x)=H|’2‘:1(x—xk).The coefficients; are chosen so that

Note that the optimum grid for interpolation with Sinc Ed. (6) is satisfied, i.e.,
fL_mctions must also be equi-spaced anq centerpdex,. ci=a(x)on(x), 1<j=N. (13)
(j=0,£1,+2,...,£N/2). By the properties of the Fourier
transform, we see that the discrete version of @jy.above The simplest choiceq(x)=1, corresponds to polyno-
will span all the momenta up to the valpe,,.=7/Ax and ~ Mial interpolation. For a general gri, k=1,... N, the
therefore Fourier and Sinc pseudospectral methods are corfiinctions ¢y ;(x) are the Lagrange interpolating polynomi-
pletely equivalent in accuracy. The coefficied) which ~ &ls. In the case tha,= —1 andxy=1, and the othex, are
give the approximation to thetth derivative can be obtained the zeros of some orthogonal polynomial, these basis func-
by analytically differentiating the Sinc function, S[ifg  tions will produce orthogonal polynomial collocation meth-
—x;)/Ax]. For the second derivative, which is the case ofods [for instance, if we choose the interpolation points at
interest for the Kinetic energy term in the Sotlimger equa- Xk=coskn/N) it gives the Chebychev methpd Other

tion, the coefficients read: choices ofa(x) will produce other methods: for example,
a(x)=e *is the Hermite collocation method, ordf(x) is a
2(—-1)i s rational function we have a rational function collocation
jzA—Xz j=*1x2,... method. Also note that the Sinc method described in the
bffj)= , ) (100  previous subsection corre_sponds to a similar general form for
. -0 on,j(X) but W|t_h wn(X) :sm(_w(x.—xj)/A.x) and a(x)=1.
3AX2 To approximate the derivatives, i.e., to calculate the co-

efficientsb{) in Eq. (7), we can proceed in the same way

Note that these coefficients decay @61/j?). In com-  taking analytlcal derivatives of the corresponding interpolat-
mon physical applications we want our wave function toing polynomials. Explicit expressions for first and second
decay exponentially with (for instance it can initially be a derivatives have been givéfFor Lagrange polynomial ba-
Gaussian wave packeti.e., we want the boundary condi- sis functions, instead of using the analytical expressions we
tions u(x—«)=0 to be satisfied. Therefore, the derivative found it preferable to employ an algorithm proposed by
sum, Eq.(7), will differ from the infinite series by an amount Fornberd®® Fornberg was able to find recurrence relations
which decreases exponentially with the ordiersince con-  for the derivatives of the Lagrange polynomials to obtain the
tributions of u(x;) for largej will be negligible. We can coefficients for any order of derivative and arbitrarily
effectively compute the derivative with the accuracy of thespacedgrids in a computationally very efficient wapnly
full infinite series ifN is sufficiently large. The “sufficient”  four arithmetic operations for each coefficignthis algo-
value of N to reach the pseudospectral limit of course de-rithm then provides a very fast generation of the Hamiltonian
pends on the problem we are investigating. In quantum momatrix for any type of grid and order of approximaticahe-
lecular dynamics, the number of grid pointsumber of gree of the Lagrange polynomjalThe systematic way with
terms in the expansigrone should use for a sufficient sam- which one can vary the order and the great flexibility in
pling of the phase space volume is given by the requiremendefining the grid points will prove to be quite advantageous.
of “one point per Planck cell,®> which leads to a relation Note also that, because the interpolating polynomial of
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minimal degree is unique, differentiatipRq. (7)], is exact if  exact derivatives of the interpolation polynomial passing

un(X) is a polynomial of degre@l or less. through the collocation points. We can be more specific and
take the limitN—o of the Lagrange interpolating polyno-
C. Relations between FD and PS methods mial. Consider an equi-spaced grid arousd0 with spacing

That PS and FD approaches must be related can be sedi=1 extended oveN=2M +1 grid points. The Lagrange
intuitively from the fact that PS methods also provide thepolynomial will be:

(X+M)- (Xx+M—=1)---(x—j+1)-(Xx—j—1)---(Xx—M)
(J+M)-(J+M=1)---(1)-(=1)---(j—M)

én,j(X)= (14)

Starting from the central factors, this can be rearranged as Now, if we use cardinal basis functions like Sinc func-
the productH,’l’Ll(l—(x—j)Z/kZ), which in the limit M tions or Lagrange polynomials, we have an approximation to

—o becomes the kinetic energy operator given by H{), therefore
o N/2—1
(x—))?| sin@(x—])] A 1 (2)
- = TV (X)) =— 5= bW (X;). 21
J'me (x)= H (1 % o) (%) E (X)) (2D

(15 Taking into account thakj=xk+ij, and using the fact
Therefore, the infinite order limit of FD gives a PS methodthat the Fourier transform of a translated functign(x
with Sinc functions as the expansion basis functitfs. +AXx) is
This has also been noted by Colbert and Millier the con-

iKAXqT)

text of a discrete variable representation for the calculation "W (k), (22
of reaction probabilities. we obtain the spectrum in momentum space

To understand better the character of both approaches, N/2—1
we turn to the example of the time dependent Sdimger F(k)=— 2 b(Z)e.kJqu,(k) 23)
equation: 2m j=

OV (x) . N For simplicity we will consider a uniform grid withl an odd

I = TY(0+V¥(X). (18 number of grid points. Then, we have

M

The application of the kinetic energy operator at a given - ) ~
b<k?3+2j§1 b cogkjAx) | T (k), (24)

collocation point is T="27m

whereN=2M + 1. The coefficients in the cosine series ex-
17 pansion are the FD weights in case we use Lagrange poly-
X=X nomials or the weights given by E¢L0) for Sinc functions.

If we use a Fourier basis for the expansion of the waveVe want to find the coefficients that give a good approxima-

function as in Eq(4), the kinetic energy operator will be tion to the kinetic energy operator. Since we know that the
exact spectrum in momentum representation is given by Eq.
N2—1 . 2
<|27Tk

— (20), we require that the trigonometric expansionkdfbe-
T2meS | L e (18) tween_[—kmax,kmax] equals_ the ser_ies expansion in E24).
The trigonometric expansion fd? is:
The spectrum in momentum space of the kinetic energy op-

1 92W(x)
% 0’})(2

TW(x)=—

T\If(x )=

erator is obtained by taking the Fourier transform and that k2= max o (= 1)) (2kpa® cOg TjK/Kmay)
gives E e . (25
= o
~ 1 472 NZT Comparing with Eq(24) we immediately see that
T( k)= ﬁ NZA 2 k—EN/Z kzak- (19) 2
X= k=— b(kz):kmax
We know that the operation on a component of the wave 03
function i t i ;
unction in momentum space is 2(~1)i* U2
b(2)=— T (26)
p @ k2 k,j 22 :
TT (=5 T(K)=5-a. (20) J

2m . . . . .
If we identify the maximum momentum with the grid spac-

Thus, we see that all momenta until the vallig,.) ing as in the Fourier or Sinc approaches, ikg»= 7/ AX,
=7/ Ax are represented, by virtue of the sampling theotem.we find exactly the infinite order coefficients given in Eq.
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(10). Thus, the trigonometric expansion provides another  \/(x)=D[e ?®*—2e~*]+D, (31)
method for evaluating the coefficients of any derivative.
The infinite order coefficients of a FD approach or
equivalently the Sinc DVR expansion coefficiefiq. (10)]
decrease only a€)(1/j%) and therefore the approximating
series to the derivative of the wave function converge slowly
if W(x) is of the same order of magnitude as the coefficients En=«
[i.e., we are above the aliasing liMftEq. (11)]. This means
that truncation of the Sinc PS method using less points thawith x=5.741837 28610 * a.u. and g
the needed from the relation E¢L1) will give very poor —=156.047612535. The reduced mass for theid u
results. If we want to improve the convergence of the trigo-= 119406 a.u. This system has recently been studied com-
nometric series in order to be able to use less tdtess grid ~ putationally by Weiet al”* as a test case for another local
points in the approximation, we should use an acceleratiormethod, the Lagrange distributed approximating functionals,
scheme, which in turn implies to multiply the terms in the introduced by the authors. This is in fact a FD scheaye
series by some acceleration weights. A classical example @roximation by Lagrange polynomialsvith weights multi-

whereD=0.0224 a.u. and=0.9374 a.u. The model is ana-
lytically solvablé® using confluent hypergeometric func-
tions, and the exact expression for the eigenvalues is

, (32

the Euler's transformatiofY. plied by rapidly decreasing Gaussian functions to improve
We can consider the series E84) above as the special further the convergence.
case,z=1, of the general alternating series: We used a total number of 80 grid points to discretize
M the Schrdinger equation with uniform spacing in the inter-
S, = E a7l @27 val of [ —0.8,2.0. From the values of the potential energy,
M~ je i i
i=o we see that the maximum eigenvalue we can properly repro-
with duce isn=30, and the optimum grid spacing is 0.0515.
Note, that with 80 grid points we have a spacidx
a0=b(|f3 =0.035 and we are well below the aliasing limit for the
@ ) representative eigenvalues. The time independent "Schro
a;=b,’} cogkjAx), (28)  dinger equation is solved as usudfypy employing an ex-

wherebffj) are the Sinc weights defined in Ed0) (note that ~ Pansion of the wave function in basis functions which are
they alternate in signAlternating series are ideal candidates ©'thogonal for different grid points, so that the potential en-
for linear acceleration techniqu&®!® Boyd has shown that €rgy matrix is diagonal:

the Mth order finite Qifference approximation is equivalent to Vi =8 ,V(x), (33)
the accelerated serié3: o _
M and the kinetic energy matrix has the form
SHEDIELI (29) 12 1
= ' _ 2 _ 2
=0 Tj,i__ﬁgl bl(vl,)kélifjl,k__ﬁb&/l,)\ifj\- (34)

with acceleration weights
Here, the coefficientb(?), are either the infinite order coef-

M :
cu 02(6/772)[ 2 1/1-2} ficients, Eq.(10), or the FD weights, which can be obtained
' i= in closed form by multiplying Eq(10) with the acceleration
B 5 ) ) . weights given by Eq(30). In this study the weights in FD

e =(MOILM=PI M+, j=1,... M. (30 approximation are computed by using Fornberg’s algorithm.

Here we stress two facts: first, the above acceleratiohn the case thatl, the order of approximation, is equal to the
weights can be shown to satisfy the required mathematicaiumber of total grid points, we obtain the usual Sinc DVR
properties to be a robust and well behaved acceleratiomethod.
scheme, therefore, we expect high order FD to improve uni- In Fig. 1 we present the fractional errok {y,rox/Eexact
formly the convergence of the trigonometric series expan—1) for the eigenvalues=5, 15 and 25 as a function of the
sion. That this is indeed the case will be shown in the nexprder of the approximatioM. The Hamiltonian matrix was
section. Second, it can be demonstrated that accelerating tiéagonalized using a routine from the IMSL mathematical
trigonometric series in this way corresponds to choosing thébrary which is a hybrid of LR and QR algorithms. The
coefficients in Eq(24), so that the Taylor expansion of the order of approximation increases up to a value where the
truncated trigonometric series coincides withto the high-  error becomes constant, so that the numerical error for the
est degreé? Thus, FD is going to improve the accuracy of eigenvalues is mainly due to the diagonalization routine and

the spectrum mainly at lower values of the momentum.  not in the approximation of kinetic energy operator.
As is clearly seen, even for the largest eigenvalue we do

not need to use the full number of grid points to achieve the

pseudospectral accuracy. In fact, for the eigenvalee25
We applied both methods, PS and high order FD, to findhe pseudospectral limit is reached usiMg=27, while for

the eigenvalues of the one dimensional Sdimger equation the Sinc method we should use at lellst 68. We also note

for the vibrational motion of the;Imolecule. The potential is that for the usual Sinc DVR scheme the Hamiltonian matrix

a Morse oscillator: in one dimension would be a dense matrix, while FD pro-

IIl. APPLICATION TO IODINE MOLECULE
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all those grid pointsx; for which V(x;)>V.."” Then, the
wave function will be negligibly small for those configura-
tions with energy neaY.. It is here where the FD method
can be most useful, since it has complete flexibility in the
generation of the grid. One could of course use the Sinc PS
method in case we still use a uniform grid, but then the
Hamiltonian matrix is not very sparse and no fast transform
exists to calculate the Laplacian of the wave function.

The purpose of this section is to show that high order
FDs can be used for accurate numerical propagation of wave
packets even for very long times. As expected from the
simple system treated in the previous section, a numerical
accuracy similar to that of the Fourier method can be ob-
tained using sparse differentiation matrices. Moreover, due
to this fact and the possibility of easily optimizing the grid in
the way described above, for three or more dimensions the
FIG. 1. The logarithm of the fractional error in the vibrational eige_nenergiesmethod requires appreciably less computational resources
(Eapprox/Eexacr 1) Of I, molecule versus the order of FD and Sinc DVR o the FFT. Before proceeding to the discussion of the
approximations. The vibrational levets=5, 15 and 25 are examined using . . .
FD coefficients(solid lines and infinite order coefficientdashed lines In ~ tWO- and three-dimensional examples, we wish to make a
the finite difference method centered equi-spaced grids are h$e@ few technical remarks: unless we intend to use dynamically
+1). changing grids, the differentiation matri¥xiamiltonian op-
erato) is generated only at the beginning of the calculation

and used when needed for the time propagation. Because of

vides a banded matrix with at mosk2+ 1 nonzero elements  he efficiency of the algorithm described by FornBéripe
in each row. It is obvious that the sparsity of the Hamiltoniangeneration of the differentiation matrix is very fast, so this

matrix will increase in higher dimensions, making a signifi- 51g0rithm could also be used with adaptive or dynamically
cant difference in computational cost between a FD approac@hanging grids. Moreover, we do not need to store the zero

log(fractional error)

40 60 ‘ 30
_ order(M)

and a DVR scheme. elements of the differentiation matrix and this also reduces

appreciably the storage requirements in the computer
IV. MULTIDIMENSIONAL WAVE PACKET memory, a point which is crucial in high-dimensional sys-
PROPAGATION WITH FD tems.

In quantum molecular dynamics simulations, since theA. The 2D Contopoulos—Barbanis potential
introduction of the Fourier method, the two main problems We will studv a two-dimensional svstern emploved in
which make its implementation difficult in many realistic . udy . Al SY ploy€
molecules are the complexity of the quantum phase spa several investigations in the pastmainly in the connection
displayed by such molecules and its high dimensionality _etween cIassu;aI and guantum dynqmlps. Of‘e of car-
which causes the numerical effort and the computer memor”e.d out extenswp studu_es of the periodic orbit _structure of
requirements to be too large for the current computers. Pa%lglri ?s)lsgzg:r?t:]: dlts rfyﬁ“ﬂgrﬁn%ﬁ;ﬁm mechanics. The sys-
of the difficulties come from the fact that the choice of the y '
grid is very restrictive in PS methods with fast transforms for ~ H= 1(p2+ p§)+ Hwix%+ w)ZlyZ)_ ex?y, (35)
matrix-vector multiplication(we must use a uniform grid )
with a number of grid points equal to a power of a specific/here the parameters.aré=0.9, wy=1.6, ande=0.08.
number for the Fourier method, or the grid points must bel he time dependent Schifinger equation, Eq16), was nu-

chosen as the zeros of the Chebychev polynomials for thEnerically solved using a Chebychev expanéifjnr the
Chebychev technique propagation in time, while the action of the Hamiltonian op-

Apart from the wasted configuration space sampling@rator on the wave function was evaluated with the FFT

care must also be taken when the potential energy surfadgethod and with matrix-vector multiplication using FD, in.
(PES has a complicated topography. The Fourier approaciQrder to study the convergence and compare the computation

imposes periodic boundary conditions, but in many situalimes. The resulting vibrational spectrum was obtained as
tions, like vibrational spectroscopy, the topic we are mainlyusual with the Fourier transform of the autocorrelation func-

concerned with, the correct boundary condition, is that thdion of the wave packet

wave function vanishes at the boundaries of the dgft 1 [

radial coordinates Thus, in many occasions one has to re-  (E)= ﬁj expiEt)(#(x,0)| p(x,1))dt. (36)
sort to the use of complex absorbing potenffats to em- o

ploy other tricks such as fast sine transfoffnghich a priori We propagated a Gaussian wave packet initially local-

satisfy the box boundary conditions. A very convenient wayized on a 1:2 resonance periodic orbit at a high eneigy (
to impose these conditions, which also reduce appreciably 23 a.u., see Fig. 12b in Ref. R6t is interesting to plot the
the size of the grid, is to use a cutoff value of the potentialwave packet in configuration space and compare the solution
V., as a criterion to choose the grid points, i.e., we discardf Schralinger equation using the two methods. In both
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Intensity

M=4 © M=7 @ |

E(a.u.

FIG. 2. Snapshots of the wave packeta28 a.u.(1/4 of total propagation 5 3. power spectra obtained from the correlation function of the wave

time) with a rectangular grid and 64 grid points in each dimensianFFT packet shown in Fig. 2. FFTsolid line), FD 4th order(dashed lingand FD
method;(b) FD with M=2 (second order (c) FD 4th order;(d) FD 7th 7th order(dotted ling.
order.

cases we used a rectanaular arid with 64 points in each dI_he order of the approximation and take less grid points than
. 9 9 he . fo increase the number of grid poirftsy increasing the order
mension, andAx=0.3175. We wanted to obtain a high reso-

lution for the spectrum AE~0.056). and thus, we propa- by one we should add two more grid points to evaluate the

gated the wave packet for 1024 time stepstAtl/4 of the Laplacian, but we should mcreai}eby about 20 points at
. . . low order to get the same reduction in the eyror
total time we took a snapshot of the wave function. In Fig.
2(a) we show the wave function obtained with the FFT
method(the potential energy contour is superimposed on thé. The 3D Contopoulos—Barbanis potential
same plot at the mean energy of the wave packetFigs. Now, we extend the model potential to three dimensions,
2(b), 2(c) and 2d) we show the same wave packet obtained
with a second, fourth and seventh order finite difference ap-  V(x,y,z)= 5 (0ix*+ wjy?+ 052%) — ex’y — nx?z. (37)
roximation, respectively. From Fig. 2 we can see that con: .
’ P y g The additional parameters have the valugs=0.4 and 7

vergence of the wave function is approached with the FD . . . .
g PP =0.012" The initial Gaussian wave packet is put on a peri-

method, even for a wave packet quite spread in configurationd_ bit which i 192 the th d
space. Finer details reproduced by even higher order FD ap?— Ic orbit which 1S a .. resonance among the three de-
proximations, however, will not affect very much the Spec_grees of freedom. The family of this periodic orbits turns

trum, since, this is an average of the propagated wave funt’I[om stable to complex unstable. The same potential was
tion over the configuration space. The resulting spectra argsed by one of U to st.udy qggntum .mechamcally the phg—
shown in Fig. 3(here we omit the second order FD for the nomenon of complex instability, which was also found in
sake of clarity, although the comparison is very poor as ex-
pected. Even with ordetM =7, the only appreciable differ-
ence is in the intensities at high energies.

We recall that, a FD approximation is equivalent to a

3.54

Taylor expansion series of the kinetic energy spectrum, N=64
therefore, in the limit ofAx—0 we recover the exact spec-
trum irrespectively of the order of the approximation. It is  **] o

worthwhile to investigate then how the FD converges to the
Fourier method as we increase the order as well as we d
crease the grid spacing. We examine the differences of the ']
central eigenvalueE=22.18) from that obtained with the Nelto
FFT method with 64 points in each dimension. When this
difference is less than the resolution in the power spectrun 0541120 N

the results are considered identical. Of course, for higher

eigenvalues we should increase further the order or decreas o

the grid spacing to converge to the desired resolution, but the 05 T T ]
general behavior is seen in Fig. 4 where we used 64, 80, 10L order(M)
and 120 points AXZO'3175’ 0.2532, 0.2020 and 0.1681, FIG. 4. Differences in energy with respect to the central eigenvaltie (

res_pectively Itis See_n_that convergence in both dire(_:tions IS=22.18) in the FFT spectrum of Fig. 3 as a function of the order of ap-
quite fast, although it is computationally cheaper to increas@roximation. Rectangular grids with 64, 80, 100 and 120 points were used.

quOI'

€
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TABLE I. The total number of grid pointéN) and CPU times in minutes  plifies considerably the problem of constructing the Hamil-
(1) and seconds() for propagating a 3D wave packet with FFT and vari- tonian matrix in a DVR type calculation or the Hamiltonian

able order(M) finite difference approximations. The number of grid points . .

necessary to compute the derivatives in the FD methodMst+2, equi- operator for the time dEpendem prOblem' This also allowed

spaced and centered at each grid point. Optimized grid is that in which thélS t0 check systematically the convergence, so that results
selected grid points correspond to potential values less than the cutoff valugan be obtained with any desired accuracy.

V=15 a.u. The computations were carried out with a PC Pentium Il at 450 The common frame in which PS and local methods can

MHz and memory of 512 MBytes. . . . .
Y yt be placed, starting from approximations to the solution of

Rectangular grid Order partial differential equations using cardinal basis functions,
(N) Optimized grid (M) ~ CPU-Time FFT also allows us to explore the relations between the two meth-

32 256 15972 3 4 ods. The ultimate reason why we do not need a very high
5 6454’ order FD scheme to obtain the same accuracy as the Fourier
7 884" or Sinc PS techniques is that FD can be seen as a robust sum
9 16028 Converged  gcceleration procedure of the Sinc PS methbdhis was

65 536 33180 ) o~ 6744 shown b_y a S|mp]e one-dimensional example in Sec. Ill. I.n
3 21646' the previous section we demonstrated the usefulness of high
5 28539'  Converged  order FD applied to quantum molecular dynamics problems,
7 28856 with a considerable reduction in the computation time in the

§ 3D case.

115200 59214 21 21295‘,1, FD have additional advantages, like the sparsity of the

3 28930'  Converged  Hamiltonian matrix. They are very easily vectorizable and

5 46820 ideal for parallel computation. Although we confined our-
selves here to the use of uniform grids for comparison with
the Fourier and Sinc methods, they can be used without any
) additional modification in irregularly spaced grigse ob-
molecgl¢§ such as HCN and acetyléﬁe/.\/e will use the ‘tained preliminary results in the one-dimensional harmonic
same initial conditions for the wave packet as those used iy Morse oscillators using different grid distributians

Ref. 27. They can also be combined with different weight functions

Here, we are interested in comparing_ both ngmericahike Gaussian windows, an approach that leads to
methods (FFT and FD from the computational point of 5\ eletd}) to improve the convergence of the local methods.
view, and in studying .thg apphcathn of optimized grids to Although, high order FD works well for long time propaga-
the time dependent Schdimger equation. We chose a poten- i, “they could also be used in combination with filter di-
tial cutoff value ofV.=15 a.u. after doing some test calcu- agonalization techniqué?, where only short time wave

lations to verify that this value provides the proper boundarymcket propagation is needed and we can decrease the order

conditions for t.he wave function.in. the range of energies inof the FD approximation without the sacrifice of accuracy.
which we are interested. Even if in this simple model the

C > 2V Here, we treated simple models but in a companion pa-
topography of_the potential is not compllcatérdls_ Ilke_ two per we apply high order FD approximations to propagate
harmonic oscillators weakly coupledhe reduction in the

) . L _wave packets and extract the eigenfunctions on a realistic
number of grid points is significant. As seen from Table |, "t molecular potential representing the inversion dynamics of

is about a factor of 2, which, combined with the sparsity ofAr3 van der Waals comple® Work on higher than three-

t_he d.ifferentiation matrix, allows us to reduce the computaimensional problems is in progress and will be published in
tion time by about a factor of 3. Here, we used for the FFT &he future.

rectangular grid with the edges tangent to the potential cutoff
value, and convergence means that even the highest values
of the spectrum are reproduced to the accuracy of the spe@CKNOWLEDGMENT

tral resolution which in this case is 0.038 a.u. R. Guantes gratefully acknowledges financial support
from a European Union TMR granEFMRX' CT'97'0101).
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