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We present quantum mechanical bound-state calculations for X)Qiing anab initio potential

energy surface. The wave functions of the first 700 states, corresponding to energies roughly
23000 cm* above the ground vibrational state, are visually inspected and it is found that the
majority can be uniquely assigned by three quantum numbers. The energy spectrum is governed,
from the lowest excited states up to very high states, by a pronounced Fermi resonance between the
CP stretching and the HCP bending mode leading to a clear polyad structure. At an energy of about
15 000 cn* above the origin, the states at the lower end of the polyads rather suddenly change their
bending character. While all states below this critical energy avoid the isomerization pathway, the
states with the new behaviour develop nodes along the minimum energy path and show
large-amplitude motion with H swinging from the C- to the P-end of the diatomic entity. How this
structural change can be understood in terms of periodic classical orbits and saddle-node
bifurcations and how this transition evolves with increasing energy is the focal point of this article.
The two different types of bending motion are clearly reflected by the rotational constants. The
relationship of our results with recent spectroscopic experiments is discussetR9®American
Institute of Physicg.S0021-96007)01546-9

I. INTRODUCTION Significant advances have been made in the last years, at
least for small molecules, in generating accurate PESs and in
Spectroscopy is an extremely powerful tool for deter-solving the multidimensional Schdinger equation using
mining the structure of moleculédJsually one starts at low these surfaces® A recent and prominent example is
excitation energies, deep inside the potential well, and deveHCO*-® Nonetheless, when one considers highly excited
ops a simple Hamiltonian which is able to reproduce themolecules, the density of states is large and consequently
measured spectrum. With increasing energy it becomes nepundreds or even thousands of eigenfunctions have to be
essary to gradually extend the Hamiltonian model in order tqalculated, which is still a formidable task. Moreover, even if
take into account higher order effects such as anharmonicive are able to accurately compute a dense spectrum of vi-
ties or couplings between the different modes. However, alprational levels, something which becomes more and more
though this rather general approach has been applied vefgasible with modern computers, the inspection of all these
successfully in the past, it is uncertain how far it can bewave functions and their assignment to sets of quantum num-
extended. If the energy approaches the dissociation thresbers as well as the extraction of dynamics information from
old, the mixing between states normally becomes so stronthe spectrum are still big challenges.
that simple models are bound to fail. Likewise, if the energy ~ Because of the problems related to the “understanding”
comes close to an isomerization barrier, some new dynambof spectra—with “understanding” we mean not just the as-
cal behaviors are expected to develop, which may be difficulsignment to quantum numbers, which anyhow becomes more
to be described by extending pictures appropriate at muchnd more questionable with increasing energy, but primarily
lower energies. Thus, either some new models have to bime distillation of dynamical information encoded in the
formulated or, alternatively, the problem has to be ap-spectra—in the last years tremendous efforts have been made
proached from a different perspective, that is, the exact sao develop techniques for recognizing patterns and hierarchi-
lution of the Schrdinger equation using a global potential cal coupling in highly congested and complex spectra. We
energy surfacéPES. can broadly divide these techniques into statistical and dy-

9818 J. Chem. Phys. 107 (23), 15 December 1997 0021-9606/97/107(23)/9818/17/$10.00 © 1997 American Institute of Physics

Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Beck et al.: Vibrational states of HCP 9819

namical. In the first category we classify methods which em-electronic state®2° In order to find signatures of large-
ploy a special kind of sorting the spectral lines for patternamplitude angular motion, i.e., isomerization, Field and co-
recognition. Among these techniques we mention the hieramworkers have exploited tha—X andC—X transition bands
chical tree method of Davi$ and the extended crosscorre- in an attempt to access high lying bending vibrational
lation function method of Field and co-workér3he second state* The former band is believed to follow the pure
category incorporates all semiclassical methods which try thending overtones (©;,0), with v, ranging from 26 to 42,
establish a correspondence between quantum states and soflsich span an energy interval o3 eV above the vibra-
classical objectf’ Once, such a correspondence has beemional ground state. This energy regime is expected to be
achieved the extraction of dynamics is facilitated throughsufficiently high to allow large-amplitude motion of the H
visualization of the nuclear motions offered by classical me-atom around CP.
chanics. By fitting the spectra to well known spectroscopic mod-
The validity of semiclassical correspondence is still anels for linear molecules it was established, however, that de-
open problem, especially at high energies where the classicgpite the energetic opening of a whole new portion of the
dynamics turns to be predominantly chaotic. However, aftecoordinate space the spectrum is surprisingly regular, as was
the pioneering works of Gutzwillét*®and Hellet** nu-  also found by Lehmanat al?® some time ago. Nevertheless,
merous numerical applications have demonstrated the impotwo quite surprising observations were made which indicate
tance of classical mechanics and especially of periodic orbitghat indeed a structural change from mainly H—CP to CP—H
(PO in understanding the localization of wave functions in motion may be entangled. First, withh=32 perturbations of
configuration space, which in turn is helpful for understand-the pure bending overtones set in which were absent at lower
ing spectral pattern®1° excitations. Second, the vibrational fine structure constants
The concept of POs for tracing the dynamical and specef the (0p,,0) levels change abruptly around=36. For
troscopic characteristics of a polyatomic molecule becomegsxample, the rotational constay rises suddenly by about
particularly powerful when it is applied in conjunction with 8% from v,=34 to v,=42. One possible explanation for
continuation technigques in order to compute families of POssuch a relatively large increase is a substantial change of the
and their energy dependen@This then leads to the con- molecular structure. The authors conjectured, on the basis of
struction of continuation/bifurcation diagrams, which are ex-our ab initio PES, that the change in the character of H—CP
ceedingly helpful for recognizing how spectra change fromstretch from dominantly H—C to P—H motion should cause a
the bottom of the potential well to highly excited states. Thelarge change in the vibrational level structure and therefore
usefulness of POs has been demonstrated for a number obuld lead to the sudden turning on of perturbations as well
triatomic molecules? and recently even for acetylene, a pro- as the abrupt changes in the fine structure consfants.
totype tetratomic molecul&. A few interesting phenomena In order to shed some light on these rather surprising
have been discovered such as the importance of saddle-nofledings we have carried out three-dimensional quantum me-
state4® and their connection to the isomerization processeshanical bound-state calculations employing a@m initio
as well as the phenomenon of complex instabflityA mol- PES. In a recent communicatiowhich will be referenced as
ecule, for which the understanding of its energypaper |in what followswe have presented some preliminary
spectrum—on the basis of only the bare quantum mechanica¢sults from our classical and quantum mechanical
calculations—would be difficult without POs and their calculations® The main result was the finding of two dis-
continuation/bifurcation diagrams, is HCP in its ground elec-tinct families of bending states; one with wave functions
tronic state. In this article we demonstrate how these classeonfined to small bending angles and the other one sampling
cal tools can be used to elucidate the patterns in the quantuthe isomerization path all the way from H—CP to CP—H. The
mechanical spectrum of HCP calculated with @&m initio ~ former start at low energies and persist to very high energies
PES. well above the isomerization plateau, whilst the latter occur
Recently, the dispersed fluorescence and stimulatedbruptly at high energies. Stable periodic orbits provided a
emission pumping spectroscopy of phosphaethyne, HCRjJear-cut assignment. The different types of bending motion
performed by Ishikawat al?* have raised attention. HCP is lead to distinctly different moments of inertia and therefore
similar to HCN. Both of these molecules have linear equilib-to different rotational constants. Even though the accuracy of
rium geometries, but they differ in the stability of their linear the PES is not good enough to allow direct comparison with
isomers. While CN—H is a stable isomer, CP—H correspondthe experimental data, it is safe to conjecture that the experi-
to a saddle point on the potential energy surface. The lattemental observations bear some relationship with our predic-
has been confirmed by a numberaidf initio calculations at tions of different types of bending motion.
several levels. Lehmann and co-worK&rsarried out MP4 Inspired by our results, Ishikawet al®! have performed
type calculations for the bending potential and showed thahew SEP experiments in the energy region of
CP—H is a maximum and the same result has been obtained 400—17 500 cmt and indeed found strong evidence for
by us with CASSCF/MRSDCI calculatior{S$ec. 1). the existence of two distinct families of bending states,
Electronic, vibrational, and rotational spectra of HCPwhich they attributed to normal-mode and isomerization-
have helped to determine the equilibrium geometries andype states, as predicted by the periodic orbit analysis. These
spectroscopic constants of the ground and the first excitedew experiments, in turn, encourage us to continue our the-

J. Chem. Phys., Vol. 107, No. 23, 15 December 1997

Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



9820 Beck et al.: Vibrational states of HCP

oretical analysis of the HCP vibrational spectrum at highTABLE I. Parameters of diatomic potentials.

energies. - - -

. . . . : a; /A=t a,/A7%  ag/AT®  D./eV  RJA
In this article we present in detail the classical and quan: ! 2 ° ° e

tum mechanical calculations for total angular momentim CH@ ‘") 55297 8.7166 ~ 53082 28521  1.0823

=0. The main emphasis lies on the development of the spe@PX ?2") 45794 59231 3.6189 53568 15622

. . . . 3y —
trum from low energies, where the dynamics is simple andiP(X ") 62947 129232 96841 20559  1.4029

regular, to energies where large-amplitude bending motion i
possible and where the spectrum gradually becomes more

irregular. In | only the overtones of the various progressions

were highlighted:; in the present article we discuss all wave/® (Ry,Rz,Ry)

functions and analyze their structural changes with increas- 3 s
INg energy. . . =Vol [1_'(3”"(&” > ckPi(s1,52,59) |, ()]
The paper is organized as follows: in Sec. Il we present i=1 2 k

the potential energy surface used in these calculations, a’Where theP
Sec. Il features the periodic orbits and their continuation/
bifurcation diagrams. In Sec. IV the quantum mechanical S1=0.41615;—0.09755;+0.904153,

results are presented in detail followed by a discussion of the _

influence of the different bending motions on the rotational ~ 2 0.9060, +0.040,+0.42135, @
constants in Sec. V. In Sec. VI we discuss the relationship of s3=—0.0772;—0.99445,—0.0717;

the theoretical predictions to the experimental observation?see Table i, and =R, ~R® . The two-body parameters

3r|1|d a summary of the main results ends this article in Seca.ll’i "ay;, etc. and the coefficients in E6#) have been taken

from Refs. 34 and 35. The coefficiertg and the reference
geometriesR(? in the three-body term are fitted to thad
initio points. All parameters of the potential function are
Il. AB INITIO POTENTIAL ENERGY SURFACE summarized in Tables | and II.
The subsequent classical and quantum mechanical calcu-

] ’ lations are performed in Jacobi coordinafsthe distance
has been calculated k@b initio methods on the multirefer- ¢ o1y 40 tr?e center-of-mass of CP, the CP separation

ence configuration interactioiMRCI) level using all singly and , the angle between the vectd®sandr (with y=0 for
and doubly excited reference wave functions obtained innear, HCP: see the inset in Fig).an what follows all en-

complete active space self-consistent fig@lASSCH calcu- ergies are quoted with respect to the minimum of &P
lations. A triple-zeta-polarization atomic basis set is em-g ), i.e., the constanbSP=5.3568 eV is added to the full
e/y 1S e .

k(s1,5,,83) are functions in the variables

The HCP ground-state potential energy surfaP&9

ployed. For the C'_A‘SSCF calcula_ltlons we ha_ve ghosen otential. In this normalization the energy at the equilibrium
electrons and 7 orbitals as the active space giving rise to 14

and 260 reference configuration state functions for linear and
pent nuclear geqmetrles, respectively. The .MRCI. calcuIa—TABLE Il. Parameters of the three-body potential,
tions then result in~78 000 and 156 000 configurations for

the two symmetry classes. The calculations have been pep(s;,s;,.ss) Cy Pu(51,52,S3) Cx
formed with theMoLPRO program packagé?

: , S —0.498 438 S 2.03311
We have computed a total of 157 energies for different o _2.88822 s 1.124 21
geometries sampling a large portion of the coordinate space, s;s, 3.816 18 $153 —-2.21865
especially along the isomerization path. The points are sub- s} 1.085 68 S,S3 2.268 83
. . . . 2 3
sequently fitted to an analytical expression of the Sorbie— S; 1.214 87 si —0.105983
Murrell form 33 s?s, 2.720 32 s2s, —2.304 62
’ 155 2.159 80 $15,53 —0.671877
3 $153 —4.679 40 s3 0.027 8295
2, 2
i3 5 553 0.962 413 $,53 -3.95273
V(Ry,Ry,Re) =V (Ry,Ry,Re) + Zl VIPR). (D) s3 ~12.7328 st 0.090 820 2
= sis, 1.29398 s3s, ~1.158 38
] ) ) s2s2 1.338 36 $25,S, —0.496 434
with Rl: R,, andR; being the HC, CP, and HP separations, 22 —299757 .83 —0.633 082
respectively. The two-body terms are of the form 15553 0.566 250 $15,53 —3.25395
5183 —-14.803 2 sh 0.088 385 8
3, 2.2
VO(R)=—D.(1+a: 0+ a0 02+ as: p3 353 —0.082 9625 353 0.125 388
i (Ri) il 1iPiT A2ip; 3iP7) sgsg 212896 o ~18.0829
xexp —ayipi), ) s 0.098 932 3
A—awp Vo ~0.953 654 - 1.364 91
I () S Y2 1.437 00 s 1.856 71
where pi=R,—R; anq theR;™ are the equmbnum. bon_d RO 20099 RO 14223
lengths of the three diatoms. The three-body term is written  g© 2.426 2

as
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. . . . . FIG. 2. Potential cut along the minimum energy path as a function of the
0 20 40 60 80 100 120 angle y. The two stretching coordinate® andr are optimized. Energy

v [deg.] normalization is so that HCP(r.) corresponds t&=0. The four arrows
indicate the onset of the periodic orbits of the typ&&1A], [SN2A], and
[SN3A] and the position of the firgSN] quantum statésee text The inset
defines the Jacobi coordinates used in the present study.

designed to reproduce the true PES near the equilibrium with
greatest possible accuracy. Our focus is the vibrational dy-
namics of highly excited states near the H-EEP-H
isomerization. Therefore it does not come as a surprise that
the fundamental excitation energies are reproduced only with

7 [a] modest success. The experimental energies for the second
FIG. 1. Contour plots of the HCP potential energy surface as functions of overtone of the bendlng mode20, and the first overtones

and v for fixed value ofR (a), R and y for fixed value ofr (b), andR and of the CP StretChmg_OOJ-)- and the_lH_CP StretCh'nLg}OO)'

r for y=0 (c). Energy normalization is so that-HCP(r,) corresponds to modes are 1332.3 cm, 1280.9 cm?, and 3216.9 cm?, re-
E=0. The highest contour is f@&=0 and the spacing AE=0.5eV. Also  spectively(Table XI of Ref. 3. The corresponding calcu-
shown are the projections of selected classical periodic ortaitsand (b) lated values are 1283 Crh 1234 cm® and 3330 cml
short dasheg,B], E—2.509 eV; long dashefr1A], E=—2.500 eV; solid . - !

line, [SNIA], E——2.5826V. (¢) long dashes[r], E——2.507 eV: Two regently publisheéb |r'1|.t|o.calculat|0ns concen_trate on
dashed—dotted linR], E= —2.501 eV. the region around the equilibrium and therefore yield much

better agreement with these experimental dat&

is —5.2361 eV(R=4.1572a,, r=2.9444a,, y=0). A FOR-
TRAN program of the potential energy surface is availabl
(Ref. 10 in paper)l

Two-dimensional contour plots of the HCP PES are de-  Periodic classical orbit$POg are located by multiple
picted in Fig. 1. Note, that there is no minimum for the shooting algorithms and by damped and quasi-Newton itera-
CP—H linear configuration but only a saddle point; the uppetive method$®® According to the Weinstein and Moser
part of Fig. 1 is misleading, becauBeis fixed in this repre- theorem&-*?for a system withN degrees of freedom there
sentation. The potential contour along the minimum energyre at leasN families of periodic orbits, which emanate from
path in the angular coordinate is shown in Fig. 2; in order tathe stable equilibrium points of the potential energy surface.
calculate this energy profile, the potential has been miniThese families are called principals and correspond td\the
mized inR andr for a fixed value ofy. The energy and the different vibrational modes at energies not too high above
coordinates of the CP—H saddle point ard.8935 eV,R  the minimum. At a saddle point of a potential one can also
=3.5634a,, r=3.0904a,, and y=180°, respectively. For find principal families of POs which, however, are unstable
the subsequent discussion it is worth underlining that, af those directions along which the potential descends. By
seen in Figs. (&) and Xb) as well as Fig. 2, the behavior of following the evolution of the principal families with total
the PES changes quite dramatically in the angular intervaénergy, one can locate new families of POs, which bifurcate
between 60° and 90°. This is the region where the bondingrom the parent ones; they have either the same periods as
changes its character and H—CP begins to more and more gloe original POs or multiples of them. The theory of bifur-
over to CP—H. cations of POs as well as their stability analysis is well de-

Neither the level of theab initio calculations nor the veloped, and the representation of numerical results is com-
number of calculated points and the analytical fit have beemonly given by a continuation/bifurcation diagrdf:*®

IIl. PERIODIC ORBITS AND PHASE SPACE
€STRUCTURE
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150

50

ues of the monodromy matrix are pairs of complex conjugate
numbers with modulus equal to one, the PO is stable. If one
or two pairs of the eigenvalues are real numkénsy come
in pairs of A and 1A), the neighboring trajectories deviate
exponentially from the PO which is then called singly or
doubly unstable, respectively. For systems with three or
more degrees of freedom it may also happen that four eigen-
values are related to each other according,ta/\, \*, and
1/\* with modulus different from one; the PO is then called
complex unstable.

In Fig. 3(@ we show a projection of the continuation/
bifurcation diagram of HCP in theKr) plane. The diagram
is constructed by plotting the initial value of one particular
degree of freedonithe CP bond distance in the present
cas@ of the POs as a function of the total eneifgy® If the
energy of the system is changed smoothly, then the initial
conditions of the PO are also expected to change smoothly,
except at bifurcations. The actual shape of the curves in Fig.
3(a) is of course irrelevant; important are only the localiza-
tions of bifurcations of families of POs. Continuous lines in

i R R1A 1 the figure represent stable periodic orbits, whereas dots mark
0 ! . L unstable ones. We do not distinguish in this diagram the
-850 o (V] -30 —R0 particular type of instability; we note however, that some

families do show double and even complex instability, at
FIG. 3. (a) Continuation/bifurcation diagram. Plotted is the variation of the |east for small energy intervals as will be discussed later on.

initial CP stretching coordinatéRef. 46 as function of energy. The con- - . . .
tinuous lines represent stable periodic orbits whereas the dots indicate ur-ll:he lower part of Fig. 3 dEpICtS the pe”OdS of the per'Od'C

stable POs. See the text for more details. The arrow indicates the energy &DItS Vs energy. In Table Il we list the period and the initial
the (0,0,0 ground vibrational stateb) The periods of th¢B]-, [R]-, [r]-,  coordinates and momenta for one representative example out
[r1A]-, and[SN]-type POs as functions of the energy. of each family of POs locatet

There are three principal families of POs, one for each

Periodic orbits are either stable or unstable. A periodicd’®rma! vibrational mode. They will be denoted [y, [r],
orbit is stable when trajectories started close to it stay in it&1d[B], respectivelyB stands for bending Because of the

vicinity for all times. On the other hand, a PO is unstaplelinearity of HCP at the equilibrium point the two stretching
when trajectories, that are launched close to it, depart expdReriodic orbits,[r] and [R], are constrained to lie in the
nentially, i.e., the “distance” between the two trajectories in =0 plane for all times. Thér |-type POs represent mainly
phase space grows exponentially with time. Whether a perimotion along the CP bond, whereag R]-type POs show
odic orbit is stable or unstable is determined by the eigenmotion mainly along the H—CP stretch coordin&e ex-
values of the monodromy matrix, which is calculated by in-amples are depicted in Fig(c. For very low energies, the
tegrating the linearized equations of motion in the vicinity of third principal PO illustrates motion predominantly along the
a PO together with Hamilton’s equatioffs®® If all eigenval-  bending angley. At higher energies, however, it represents a

TABLE lll. EnergiesE, periodsT, and initial conditions for selected periodic orbits.

PO EleV T2 R® r y Pr P P,

[r] —2.9929304 2.8870 2.396178 3 1.920 7934 0.000 000 0 0.449 898 9-1.103 2931 0.000 0000
[r1A] —3.099 3287 5.8350 2.446 7297 1.856 564 6 0.106 422 2 0.129 082 9-1.964 504 7 1.9839910
[R] —3.004 1488 1.1980 25777255 1.545207 1 0.000 0000 1.078571 3-1.156 842 9 0.000 0000
[R1A] —2.2900770 2.6269 2.5904020 1.492 402 2 0.000 0000 1.128 202 6-2.315557 8 0.000 0000
[B] —3.069 214 7 5.5700 2.1191186 1.467 7320 0.230 7942 —0.160 271 6 3.050 687 4 2.867 3557
[SN1A] —3.026 447 4 7.8251 22277770 1.5890364 —0.304 1989 —0.543 7053 0.4697458 —3.5616530
[SN1B] —-3.135209 1 6.8771 2.281998 2 1.608 939 2 0.098 053 3 0.0311129 0.064 93304.026 3776
[SN2A] —2.6031056 10.2900 2.2431100 1.561 766 8 0.107 014 8 —0.027 608 3 —0.153367 7 —4.506 792 4
[SN2B] —2.611 706 2 9.9900 2.237 286 2 1.564 291 9 0.124 621 2 —0.061 508 8 —0.142 2999 —4.484 2190
[SN3A] —2.122 7772 16.8320 2.3155833 1.584 4817 0.016 886 4 0.013 950 6-0.023 606 8 —49778941
[SN3B] —2.5159655 15.4320 2.2378772 15731237 0.100 093 8 —0.078 068 2 —0.056 1919 —4.599 228 1

@0ne time unit corresponds to 10.18 fs.
PDistances in A, angle in rad, and masses in units of 1/1%@f
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mixture of bending and CP stretching motion as will be dis-ric with respect toy=0 and therefore their period is roughly
cussed below. twice the period of thér] POs[see Fig. 8)]. An example

The family of[ R]-type POs remains stable up to about 3is shown in Figs. (@) and Xb) (see also Figs. 1 and 2 in
eV above the bottom of the well. It becomes singly unstablepaper ). They show a behavior in the (y)-plane, which is
at —2.454 eV but turns stable again atl.954 eV. Then, it opposite to the behaviour of th&]-type POs.
stays stable up te-0.707 eV where again it becomes singly As seen in Table Il as well as Fig(l the periods of
unstable. However, the real eigenvalue of the monodromyhe [B] and [r1A] POs are almost identical; the same is
matrix never exceeds the value of 1.2, that is, the POs of typebviously true for the quantum mechanical frequencies be-
[R] remain reasonably stable for almost the entire energjyonging to the states, which correspond to these POs. It is
regime up to the dissociation threshold. A bifurcating family, this accidental coincidence of periods which causes the reso-
denoted by R1A] (branchA of the first bifurcatio, comes nance and polyad structure governing the entire HCP spec-
into existence at-2.454 eV, where th¢R]-type POs be- trum up to high energies. It is important to underline that the
come unstable for the first time. These POs are also confindd 1A] POs, like their counterparts of typ8], are confined
onto they=0 plane. The period of the new family is roughly to small bending angles. In other words, none of the periodic
twice as large as for the origingR] PO. orbits emanating from the bottom of the well samples the

The bend family[B], is also found to be stable up to isomerization path.
energies close to dissociation. A prototype is shown in Figs. The first POs that extend to angles larger than 40°, i.e.,
1(a) and Xb) and more examples can be found in Figs. 1 andowards the CP—H side of the PES, are found to occur sud-
2 in paper I. The characteristic feature of these POs is theidenly at an energy of-3.1526 eV or 2.08 eV above the
confinement to relatively small angles; they never explorebottom of the well. They emerge from a saddle-ng8&)
angles greater than 40°-50° irrespective of the total energypifurcation and therefore we denote theni@hl1]. There are
This behavior seems to be counterintuitive; by pumpingagain two branches, a stable one, which will be denoted by
more and more energy into the bending mode one expecf$SN1A], and an unstable ongSN1B], which we did not
the bending-type orbit to follow the isomerization path in follow as function ofE. A representative example for branch
Fig. 1(b). However, that is not the case. Increasing the enA is depicted in Figs. (g) and Xb) (see also Figs. 1 and 2 in
ergy gradually pushes the orbit towards stretching of the CPaper ). The [SN1]-type POs follow closely the minimum
mode rather than increasing This rather unexpected behav- energy path in theR, v)-plane. However, in contrast to the
ior is the result of strong mixing between the bending and th¢ B]- and [r1A]-type periodic orbits they show only little
CP stretching mode. variation in ther coordinate, less than about (ag.

Contrary to the other two principal families, the] fam- The originally stable POs of tH&SN1A] family become
ily shows an early bifurcation at4.872 eV, i.e., only 0.358 singly unstable at-2.927 eV, change into complex unstable
eV above the minimum. For comparison, the energy of theat —2.899 eV, and then become again stable-at781 eV.
ground vibrational state is4.866 eV, that is, the bifurcation Finally, they become once more singly unstable-&.668
occurs even below the lowest quantum mechanical stite. eV and remain singly unstable up to the highest energy we
the next section we shall show that there are no quanturhave followed them. The SN1 branch does continue to ener-
mechanical states with wave functions following finé-type  gies higher than shown in Fig. 3. However, it becomes more
PO) At the bifurcation point a pair of eigenvalues of the and more difficult to find these types of trajectories and
monodromy matrix is equal te-1, i.e., this is a bifurcation therefore we did not systematically follow the SN1 branch
by reflection, and we denote the bifurcating family] asA] any further. At higher energies we have located additional
(branchA of the first bifurcation. Beyond the point of bifur- saddle-node bifurcations at2.612 eV and-2.522 eV, giv-
cation the[r] family becomes singly unstable and remainsing rise to new types of periodic orbits. These POs, which
singly unstable up to+0.401 eV. However, the real eigen- are denoted SN2 and[SN3|, penetrate deeper and deeper
value of the monodromy matrix, which characterizes the deinto the CP—H hemisphere. Th8N3]-type POs show some
gree of the instability of these POs, never exceeds the valuescillatory behaviour in theR, y)-plane close to their turn-
of 1.74. The bifurcating PO$r 1A], are stable and remain ing points at larger angles. From FigbBit is apparent that,
stable up to—2.056 eV, where they abruptly cease to exist.in contrast to th¢ B]- and[r 1A]-type orbits, the periods of
Actually, from the bifurcation diagram we can see that thethe orbits of thd SN1] and[SNZ2] families strongly increase
[r1A] family originates from a reverse saddle-node bifurca-with energy. This is readily understandable becaus¢3hg
tion occurring at the energy of 2.056 eV. Here it merges orbits extend to larger and larger angles where the potential
with a branch of unstable periodic orbits, which is termedbecomes gradually flattésee Fig. 2
[r1B]. We found it very difficult to propagate this unstable The overall dynamical behavior of HCP, as it emerges
branch backwards in energy. Numerical difficulties arose befrom the continuation/bifurcation diagram, is rather regular,
cause of nearby unstable POs which cause problems in tidespite the early appearance of a bifurcation and the approxi-
convergence of the Newton—Raphson procedure, rather thanate 1:1 relationship between the vibrational periods of the
the magnitude of the instability of thg 1B]-type POs. In [B]- and the[r1A]-type POs. Instability is developed at
contrast to thgr] POs, the POs of typfr 1A] are not con- relatively high energies and only when the bending angle
fined to the y=0 plane but sample regions of coordinate extends well into the CP—H side of the potential. Because the
space with nonlinear geometries. Actually, they are symmetbending family remains stable for the entire energy interval
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studied, the unstable regions in phase space are essentially = 1500 ' ' ' '

related to the unstabler1B] family. We will show in the T (a)

next section that the POs are extremely useful for under- 1400 7

standing the quantum mechanical wave functions and their

development with energy. S 13001 .
£

Q

—

IV. VIBRATIONAL LEVELS AND EIGENFUNCTIONS > 1200

A. Variational calculations

o upper state

1100 e lower state

We have performed quantum mechanical variational cal- _
culations for determining the vibrational energies as well as 1000 L . . . .
the corresponding wave functions. The total angular momen-
tum isJ=0 in all cases. The Hamiltonian is represented in a
highly contracted/truncated 3D basis as described in detail in
Ref. 48. The variational program requires basically two pa-
rameters. The energi., up to which all internally con-
tracted basis functions are included and the maximal distance
in the dissociation coordinat®,,,. All other parameters are
chosen automatically. In the present calculations we used
E.i=—0.2 eV andR,,x="7.5 a, resulting in about 9000 ba-
sis functions. The estimated error due to limitations of the
basis size is less than 1 meV for levels up to 3 eV above the

0.15 T T T T T

bottom of the well, the energy region most interesting for the 0L : : : :
present study. Since our PES does not have spectroscopic 0-8 0-9 1'_01/2 11 12
accuracy, slight errors in the vibrational energies are not con- M

sidered to be crucial. It is well known that wave functions FIG. 4. (a) Variation of the excitation energies of the first two excited states
converge more slowly than energy levels. Nevertheless, wgs xcp with my 2. The mass is measured in terms of the hydrogen mass,
are confident that the main results of this work are not afi.e., my=1. (b) Variation of the expectation value of the kinetic energy
fected by convergence problems as calculations with fewepperator associated with the CP stretching coordinatith my /2.

basis functions have demonstraféd®

We have visually examined, by both 2D projections andt . .
. ' ; X he wave functions of the two progressionsuvQ) and
3D representations, the lowest 700 wave functions in an a Prog vem)

. S . t('0,01)3) qualitatively behave in a similar way as far as the
tempt to assign the vibrational levels. As we wil demon'symmetry with respect to linearity is concerned. For this rea-

strate, the spectrum is straightiorwardly assignable up 1o aon we prefer an assignment which treats both modes corre-

energy of.roughly—3 e\(, l.e., 2.25 eV above the minimum. spondingly and therefore we identify in both cases the quan-
Around this energy regime some of the wave functions beg|qum numbers, andu s with the number of nodes along the

to behave drastically differently, which gradually compli- “backbone” of the respective wave functions in the interval

cates an upique_ assignment. Interestingly, this is the Sam[%saéw]. This facilitates, as we think, the subsequent dis-
energy regime, in which the saddle-node PLEN1], sud- cussion. Thus, in order to compare with the usual nomencla-

dgnly come Into eX|s'tence. In the following subsecuonsiwe[ure for a linear moleculéincluding the notation used by us
will describe the assignment of the levels and the relation:

ship between the localization of the quantum wave functionén paper ) the quantum numbar, has to be multiplied by 2.
on one hand and the periodic orbits on the other. The effecé Polvad structure
of the different behaviors of the wave functions on the rota-~" " >~
tional constants will be elucidated in the next section. The energy spectrum of HCP is governed by a pro-

In the subsequent discussion we will use the followingnounced anharmonic resonance between the bending and the
notation:v,, v,, andvy are the H—CP stretch mode associ- CP stretching modes leading to a distinct polyad structure in
ated withR, the bending mode, and the CP stretch modehe energy level spectrum. This resonance and the corre-
related to motion i, respectively. As mentioned in Sec. Illl, sponding mode mixing is intriguingly illustrated by continu-
the periods associated with thelA]- and the B]-type POs  ously changing one parameter in the Hamiltonian, for ex-
are very close, and therefore both types of orbits show ample the mass of the hydrogen atbin Fig. 4a) we plot
strong mixing of CP-stretching and bending motion. Thethe excitation energigsneasured with respect to t1(@,0,0
same resonance effect obviously governs the quantum meround vibrational staiefor the two lowest excited states as
chanical dynamics with the consequence that the wave funa function ofm *2 from my~0.7 to~1.6 (my is measured
tions are arranged in the (y)-plane rather than along the in terms of the mass of the hydrogen ajoffihe CP stretch-
angular axis or the CP stretching mode. Therefore, the asng frequency is, in a diabatic sense, almost independent of
signment in terms of bending and CP stretching states ithe mass of the attached atom X, whereas the bending fre-
quite arbitrary(see below. As will become apparent later on, quency varies approximately linearly withy 2. However,
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(0,1,0) aal — .
' ’ ' - - : | — (10,0 —@2 — (4,0, o)_
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L :(o, 6, 4)
mx = 0-5 1.0 1.1 1.2 2.0 (049 —(3.2,0)
S S A — G
(0,0,1) et —G
— > el i i
r I >~ L P e _ =
I —(2,4,0)
! @222

[ ——(0.9,0)

FIG. 5. Wave functions of the first excitegbwer panel and the second L e —@o

excited (upper panglstate for selected values afy . The horizontal axis _a5k —@e3) _
ranges fromy=0 to 40° and the vertical axis ranges frans 2.5 a4 to 3.5 —(0. 45
ay. For more details see Ref. 52.

E [eV]

F—27 o 6 0) —(3.1,0)
| —@o9 s 1) — (5,0, 1)

— (1,33
(1,1, 5
according to Wigner's noncrossing rule, the two energy —tad
curves are not allowed to cross and therefore are forced to | o |
avoid each other. The resulting avoided crossing oc@us 36 080 — @y
cidentally aroundmy~1.1, i.e., just in the region of HCP. [ —Gr — e
At small values ofmy the CP stretchindbending state is [
the lower (uppe) one and the wave function is clearly —
aligned along the-(y-) axis(see Fig. 5 and Ref. 52As the L —©o8 T —®00
mass of the atom X increases these two local-mode wave _anylk m—r P i
functions mix which results in a rotation in the,{)-plane. —o9
At larger values ofmy the wave functions are again aligned _ _ _

FIG. 6. Section of the energy spectrum in the region of poly&ds

along either the one or the other axis and the assignment I28—10. The assignment has been made in terms of the nodal structure of

terms of local modes is again straightforward. the wave functions. All states can be unambiguously assigned.
The effect of mixing is also illustrated by the variation of

the expectation valuegT,) for the kinetic energies in coor-
dinatesx=r or y. The lower part of Fig. 4 depict§, as a
; -1/2 ; :
function of my = for the two states considered. The location numberP=1v,+v5. Figure 6 shows a portion of the spec-

of the avoided crossing ay~1.1 is well predicted by this trum in the energy region dP=8—10. Each polyad, for a

quantity. In view of this figure it appears that for HCP thefixed value ofv, consists ofP+ 1 levels. The highest one
upper state has more character of bending motion and there- ’ :

,P,0), is the pure overtone of the bending mode, while
fore should be assigned &3,1,0, while the lower state has G1,P.0) b g

h ter of mofi | d1th b ined the lowest member (;,0,P) is the overtone of the CP
more character of motion alongand thus must be assigne stretching mode associated with In order to illustrate the
as (0,0,1. This nomenclature is in accordance with the ex

. . . “development of the nodal pattern in the low-energy regime
perimental assignment.Incidentally we note that for HCP P P gy red

h ) ith nod lianed v al i we show in Fig. 7 wave functions in polyaés=1-3. The
t ere 1s no state wit nodes aligned purely gongrt IS, relationship of the (®,0) and the (0,®) wave functions is
which is in accord with the bifurcation intgr]- and

. Lo clearly seen. The potential plot also includes the POs of the
[r1A]-type POs occurring very early, below the vibrational [B]- and thel r 1A]-type for the energies of the stat@s3,0
ground state. . . . . and (0,0,3, respectively. As expected, they follow closely
The two adlapatlc wave funqtlons can be approxmatelythe “backbone” of the corresponding wave functidfisin
represented by Imear_comblnatlo_ns of zero-order or Iocalfull accordance with the classical calculations, both the bend-
mode type wave functions according to ing wave functions as well as the CP stretch wave functions
W(r,y)=cosy ¢\, (1) d\”(y) —sing d2o(r) ¢\ Ys(y), are well confined to small angles and this does not change
when the energy increases. They do not follow the minimum
©) energy path in the R, y)-plane but are more and more
e r r pushed aside, to larger respectively smaller values dthe
Wo(r,y)=sing $2,(1) {Zo(y) +cosy Hlo(N HZ5(), first wave functions that extend well beyond 40° correspond
where 7 is the mixing angle ands{’(r) and ¢{”(y) are  to the[SN]-type periodic orbits found in the classical analy-
one-dimensional oscillator wave functionsrirand y with k  sis. How these states emerge as a function of energy and how
and| quanta, respectively. The wave functions for HCP arethey fit into the polyad structure described above is the topic
well represented by~ /4. of the next subsection.
Because of the resonance in the bending and the CP Vibrational resonances and polyads are well known top-
stretching frequencies, the energy spectrum of HCP consistss in molecular spectroscofggee Refs. 53 and 54, and ref-
of well defined polyadsy;,P—n,n) with polyad quantum erences there)nWe described the polyad structure for HCP
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TR N € % N A NS e
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¥ (0,0,12) (0,1,11) (0,2,10) (0,4,8)
Yy e b, =4,
FIG. 7. Wave functions in the low-energy range of the HCP spectrum. Ther & % r ), o,
horizontal axis ranges frony=0 to 80° and the vertical axis ranges from = ’/ =% = 2

r=2.32a, to 4.00a,. For more details see Ref. 52. In order to indicate how
the wave functions are arranged in the potential well the panel in the upper-
left corner shows ar( y) cut of the PES foR=4.157a,. Also shown are
POs of thg B]- and the[r 1A]-type; the energies of the orbits are those of
states(0,3,0 and(0,0,3, respectively.

~y

FIG. 8. Selected wave functions in polyaés=10 (upper panel and P
=12 (lower pane). For more details, see Fig. 7.

in some detail in order to highlight the structural changes

that occur at higher energies. values ofr), thereby avoiding the isomerization path, the

wave functions at the bottom of polydei=12 show some
tendency for pointing to larger angles, i.e., in the direction of
All states up to P=12 can be—without any real the CP—H channel. States with a new type of bending wave
problems—uniquely assigned. In order to illustrate how thefunctions are about to emerge! The lowest memt&0,12,
wave functions change, within a given polyad, from the low-however, has again the expected clear structure as all other
est to the highest level, we show in the upper panel of Fig. §0,0P) wave functions folP=1-11.
selected wave functions foP=10. The transition from Something really new begins with=13. This can be
(0,10,0, the highest state in this polyad, ,0,10, the low-  seen both in the energy-level structure, Fig. 9, and in the
est level, is very “smooth.” Coming from the top of the wave functions, Fig. 10. While foP<12 all polyads are
polyad, the number of nodes in thelA]-type mode gradu- complete, i.e., there afé+1 levels, withP=13 they begin
ally increases at the expense of the number of nodes in thi® become “incomplete.” What do we mean by that? At the
[B]-type mode. Between staté3,6,4 and(0,4,6 the overall  lower end of this polyad, where the lowest state For 13,
character of the wave function changes from predominantly0,0,13, is expected, there is no state which would readily fit
[B] type to[r1A] type. As we have shown in paper |, the into the (OP=13) scheme. There is a level with a slightly
backbone of the wave functions closely follow 8] and  lower energy. However, its wave function does not have the
the[r1A] POs(see also Fig. 7 The assignment in terms of general shape of (0P)-type wave functions observed for
two quantum numbers, and v is straightforwardy; is  P<12(see Figs. 7 and)8While the (0,0P<12) wave func-
zero for all these examples. Poly&=11 behaves in an tions show curvature in ther (y)-plane, this wave function
almost identical manner. runs almost parallel to theaxis, but at the same time clearly
All the wave functions forP=12, shown in the lower extends to larger angles. It is very much reminiscent of the
panel of Fig. 8, are still more or less straightforwardly as-[SN]-type POs discussed aboysee Fig. 14 and papej. |
signable in terms of nodes along their backbone. HoweverThis wave function has 13 nodes along its backbone and
careful inspection reveals that the nodal pattern of the lowetherefore we include it to thB= 13 polyad, despite the fact
members, e.g.(0,1,1)-(0,4,8, are slightly distorted in that its energy does not fit to the polyad structure. However,
comparison to the corresponding=10 wave functions. one should keep in mind that this state is somewhat different.
While all wave functions foP =10 are directed either “up” In order to distinguish it and other examples from the
(towards larger values af) or “down” (towards smaller “pure” (vq,v,,v3) States we will use the index SN.The

C. The genesis of saddle-node states
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FIG. 9. Section of the energy spectrum in the region of poly&ds FIG. 10. Selected wave functions in polyaBs-13 (upper pangland P

=13-15. The assignment has been made in terms of the nodal structure ef15 (lower panel. For more details see Fig. 7.

the wave functions. Levels, which do not readily belong to the clear polyad

structure observed at lower energies, are given in the right-hand column.

They are mostly of th¢SN] type and therefore labeled by {,v2.v3)sv-  the mixing between states gradually increases, the assign-

The dotted lines do not represent calculated energy levels, but indicate miss- .

ing levels. ment becomes more and more tedious and fewer and fewer
states can be uniquely assigned.

Close inspection of the wave functions has revealed that
tarting with polyadP=13 the lower states of a polyad
radually change their character frgmlA]- to [SN]-type.

The onset of this new type of behavior is reflected also by

The trend observed fdP= 13 continues to higher poly- A ’ "
ads and actually becomes even more pronounced. For elhe energy dependence of the various progressions. Figure 11
depicts the energy levels for the two progressions (@),

ample, forP= 14 already two states are missing at the lower
end of this polyad(0,1,13 and(0,0,19. There are two pairs
of levels at significantly lower energies, which cannot be
clearly assignedNos. 246 and 248, respectively, 254 and
255). One level of the lower pair is certainly (0,0,14) and
one level of the upper pair is state (0,1,4,3) However, due

to substantial mixing with states of tHe=11 polyad with
v,=1 the corresponding wave functions have a very bizarre _3.0
nodal structure.

For P=15 three levels are missing at the lower end of
the polyad. At the same time two states of theP]12)
polyad are absent. Altogether, there are now five states in -4.0
this energy regime, which do not readily fall into the polyad
structure as it is found at lower energies. The wave functions,
three of which are plotted in the lower panel of Fig. 10, all

first clear-cut SN-type state occurs at an energy just slightlf
higher than the firsiSN]-type PO(Fig. 2). g

E [eV]

have a clear[SN]-type behavior and are assigned to oL ]
(0,0,15)%y, (0,1,14)y, and (0,2,133y. The remaining two 0 5 10 15 20
states are assigned to (1,0,4rnd (1,1,1135. This kind quantum number P

of evolution continues at hlgher energies, tha,t IS, more anglG. 11. Energies of levels (B,0) and (0,0R) vs polyad quantum number
more states at the lower end of a pquad turn 8O{-type  p. starting with P=13 the energies of thESN] states are shown. The
states. However, because the density of states and therefafashed curve is an extrapolation of the data points Wigh12.
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and (0,0R); according to the discussion above, the (B,0, 0.05 ' ' ' '
>12) states are really (0®)gy\ states. The (®,0) progres-
sion shows a rather small anharmonicity up to very high
levels. This is in line with the observation that the period of
the correspondingiB] PO does not change much with en-
ergy. The other progression, ((F), is slightly more anhar- 0.05
monic with the result that the gap between the two ladders
slowly increases. It exists only up tB=12, where the
(0,0P) N progression abruptly sets in. The latter is highly
anharmonic, which explains why the corresponding levels do
not fit well into the general polyad structure but appear at 0.05

0.05

0.05

significantly lower energies than expected. T[I8N]-type =
wave functions have a completely different structure than the TL
[r1A]-type wave functions and extend more towards the % 0.05F .

isomerization path. Since the potential becomes gradually I ]
flatter along the minimum energy path, it is not surprising to P=11 o—o o o oo o0

observe a significant reduction in the energy spacing and e ]
therefore an increase of the anharmonicige Fig. 2

The dashed line in Fig. 11 is an extrapolation of the 0.05__1,3____,%9 ___________ o—e—ee—e—e—oo 070
[r1A] progression derived from a fit to the energies up to
level (0,0,12. It appears that the structural change of the [ p e eees )
wave functions begins just where the (®pP,and the L O ) .
(0,0P) gy curves “bifurcate.” Expressed differently, while I ]
climbing up the ladder, the quantum mechanical wave func- p=8 - oo o000
tions follow the[SN]-type path rather than tHe 1A] route 000 ey
at the bifurcation. 15 10 - 5 0

The structural change of the states is also encoded in the
energy spacing between adjacent levAlEp(nN) =Egp - n n FIG. 12. Energy spacing between adjacent levels within a particular polyad,
— E(O,anfl,nJrl)a within a particular polyad. For the lower AEg(n), as function ofn=0.n=0 marks the top of the polyadSee text

: - for further details.
polyadsAEp(n) monotonically increases from the lowest to
the highest level as can be seen in Fig. 12, i.e., the spacing is
smallest at the bottom of a polyad and largest at the top. This
monotonic behavior holds true up =9 and 10. Starting modes gradually prohibits the complete assignment of states
with P=11, AEp(n) becomes nonmonotonic having a mini- for higher and higher energies, it is possible to assign all of
mum atn=29. This minimum shifts tm=11 for P=13 and the[B]-type and most of thESN]-type overtones. In Table
then stays at 11. The two different branches for the highelV we list the energies and the energy differenc&g, be-
polyads indicate the change from thelA]- to the[B]-type  tween adjacent levels of the (3,0) and the (0,@;3)sy
behavior at the lower end of a polyad. Whether this mini-states. Examples of higher-order SN-type wave functions are
mum in the energy spacing has the same origin as the ordepicted in Fig. 14. It is clearly seen how ti&N]-type wave
predicted in the effective Hamiltonian analysis of Kellman functions penetrate deeper and deeper into the CP—H hemi-
and co-workers? has to be investigated in the future. sphere of the PES as the energy increases. For comparison

Up to now we exclusively analyzed levels without exci- we show ond SN] PO in the upper two panels together with
tation in the third coordinateR. The general behavior dis- a contour plot of the potential. Because at these high energies
cussed for thev;=0 states does not qualitatively change several families of SN] orbits coexist, it is not clear which
whenuv,# 0. Around the same energy, where thev(Qu 3) type corresponds to a particular wave function. For the
states show a transition from thelA]-type wave functions (0u,,0) statesAE decreases in a very regular manner with
to the [SN] wave functions, the wave functions for statesincreasing quantum number, which indicates that this pro-
with excitation inR show a similar change. Examples for gression is very robust and is not significantly perturbed by
two polyads, (IP=12) and (2P=10), are depicted in Fig. coupling to other modes. In contra®tE for the SN states
13. However, in comparison with the, =0 states the tran- has a less gradual dependence. In view of the energy spac-
sition occurs more gradually and not so abrupt. Thus, alings there seem to be at least two different families of SN-
though the polyad structure and the change of the structurigpe states; a third one might begin with the highest overtone
of the molecule is not strongly dependent®nthe motions considered, which we reluctantly assigned to ((0,0,26))
in r and vy, on one hand, and iRk, on the other, are not (unclear assignments are put in double bragk&mce the
completely decoupled. The distinctly different level spacingsstates (0,0,14),, (0,0,19)%y, and (0,0,253 are missing in
within polyads for different quantum numbets further  the table(because of substantial mixing with other states, the
support this conjecturésee Figs. 6 and)$° wave functions do not have a clear nodal strugiuies over-

Despite the fact that substantial mixing of all three all picture is somehow blurred. Although a direct correlation
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TABLE IV. Assigned overtone states of th&] and the[SN] type.

(1,12,0) (1,5,7) [B] E/cm*  AE/cm™t [SN] E/cm®  AE/cm™t
- 'l,, state State
S 23 (0,0,0 0
i = 0,1,0 1283 1283
(0,2,0 2568 1285
0,3, 3850 1282
(1L,0,12)sx [ (LLIsy | (L2,10) [ (L,3,9) (090  vies  1rog
(0,5,0 6388 1264
r ”mm”)}] m’,’%’, W#j} 4 ’.‘:’ (0,6,0 7639 1251
(0,7,0 8877 1238
(0,8,0 10 101 1224
9% (0,9,0 11311 1210
(0,10,0 12 509 1198
(vi =2, P =10) (0110 13697 1188
(0,12,0 14875 1178 (0,13,0 15211
(2,10,0) (2,8,2) (2,6,4) (2,5,5) (0,130 16045 1170 (0,15,0 16 931 1720
- - r 1 (0,14,0 17 208 1163 (0,16,0 17 713 782
& ;.1'_:’ {:{."j! !!!! ; (0,150 18366 1158 (0,17,0 18482 769
;?‘ S S e - (0,16,0 19519 1153 (0,18,0 19 221 739
(0,17,0 20 668 1149 (0,20,0 20 493 1272
(0,18,0 21813 1145 (0,21,0 20862 369
(2,0,10) (2,1,9) (2,2,8) (0,19,0 22955 1142 0,22,0 21228 366
m’ - Htes (0,20,0 24 097 1142 (0,23,0 21548 320
r W}I s V(#,f ‘ (0,21,0 25235 1138 (0,24,0 21825 277
WII}/ "”f/ - ((0,26,0) 22721 896

&The italic numbers do not correspond to nearest neighbors spacings.

v

FIG. 13. Wave functions for polyads @5 12) and (2P=10). For further
details see Fig. 7. . ) .
plane and approximately perpendicular to the CP &g,

is close to the spectroscopiB, measured by Ishikawa
of wave functions and POs of the differdi@N]-type or en- et al?*
ergy spacings and classical periods is difficult, the rather In general, theB,,; values for the states with wave func-
abrupt change of the energy spacing in the saddle-node stattigns of the[SN]-type are substantially larger than those for
indicates that the quantum mechanical states are indeed ithe[B]- and[r 1A]-type states. The differences can be quali-
fluenced by the differentSN]-type classical orbits. tatively explained in terms of the quite different amplitudes
of bending motion for the three families of states. The main
contribution to the moment of inertia results from rotation of
CP around the axis, while the contribution from the much
In a spectroscopic experiment one measures energy difighter H atom is exceedingly smaller. However, in the case
ferences rather than wave functions. Information about thef the small-amplitude angular motion of tH&8]/[r1A]
structure of a particular vibrational state can be extractedtates, the hydrogen atom is always far away from the rota-
only indirectly from intensities or, more precisely, from fine tion axis with the result that its contribution is not negligible,
structure constants such as, for example, rotational constantsut of the order of at least a few percent of the contribution
In the case of HCP, the two quite different bending motionspf the CP rotation. On the other hand, in the case of the
represented by theB]- and the[r 1A]-type wave functions, large-amplitude angular motion of th8N] states the H atom
on one hand, and wave functions wiBN] character, on the spends most of the time close to the rotation &xs90°) so
other, result in substantially different rotational constants andhat its net contribution is indeed unimportant. Since the ro-
therefore rotational constants are helpful quantities for identational constant is proportional to the inverse of the moment
tifying different structures of vibrational stat&s. of inertia, the[B]/[r1A] states have a rotational constant
In the present work we determined the rotational con-which is a few percent smaller than for tf8N] states.
stants for each of the 700 vibrational levels by calculating  First, we consider the variation & inside a particular
the expectation values of the inverse of the moments of inpolyad. In Fig. 1%a) we plotB,; for states ((®—n,n) with
ertia with theJ=0 eigenfunctions. The moments of inertia n=0 (the highest member of the polyatthroughn=P (the
have been calculated by diagonalizing the inertia tensor. Obwest member of the polyadFor small values of, the
course, this procedure for calculating rotational constants isotational constant monotonically decreases witftom the
an approximation and effects due to modifications of thetop to the bottom of the polyad, with the exception of the
vibrational wave functions as a consequence of overall rotalowest level. This general behavior can be qualitatively ex-
tion and Coriolis coupling are not taken into account. Theplained by the more or less monotonic decrease of the ex-
rotational constant for rotation around an axis in the HCPpectation valug(y) from state (0P,0) to (0,0P) (see for

V. ROTATIONAL CONSTANTS
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FIG. 15. (a) Rotational constant8,,, for states ((?—n,n) as function ofn
.’ for several polyadsn=0 marks the top of the polyad&) The same as in

(a) but for stateqv,=<2, P—n,n) with P=10.

J

low-energy portion of the polyad become more distinct. The
rotational constants for stat€8,2,10 and(0,1,11 are much
larger than they are expected to be. The corresponding wave

((0,0, 26))SN functions shown in Fig. 8 have some clear admixture of SN
character, which explains this increaseBgf;. State(0,0,12
r M’”I‘ ’ R is again a “normal”[r 1A] state and its rotational constant is
't ' again much smaller than for the next two higher levels. The
" 4“}”' /' first real[SN]-type state occurs in the=13 polyad and for

reasons discussed above the corresponding rotational con-
stant is significantly larger than the constants for all lower
Y Y states. Figure 16) shows, for P=10, similar results for
states with excitation in the; mode. With increasing exci-
FIG. 14. Examples of wave functions for higher overtoneqd $iM]-type tation in the H—CP stretching mode the transition fro#i-

states. The horizontal axis ranges frors0 to 140° and the vertical axes _ ; _ ;
range fromr=2.32a, tor=4.00a, and fromR=1.58a, to R=6.00a,, or [r 1A] type behavior tO[SN] type behavior occurs at

respectively. The appropriate cuts through the PES are depicted in the uppBigher and high?l’ members in the pOly@dna”eﬁ values of
panels together with a periodic orbit fSN] type for E=—2.25eV. For  n) and the rotational constants clearly show this. In conclu-

more details see Ref. 52. sion, the rotational constant reflects in a remarkable manner
the structure of the vibrational states, especially the extent of
the angular motion.
example polyad®=3 in Fig. 7). The smalleKy) the larger is In Fig. 16a) we plot the rotational constants for the 700
the distance of H from the rotation axis and, as a conselowest states as a function of energy. One can clearly distin-
guence, the smaller is the rotational constant. With increasguish two regimes: States whoBg,; constants are below the
ing polyad quantum number the behavior changes slightly imotational constants belonging to the R()) progression and
thatB,; first stays approximately constant before it decreasestates above this borderline. The R() states can be
near the lower end of the polyad. uniquely identified up to very high energies and their rota-
The overall picture changes quite substantially with tional constants vary exceedingly smoothly wikh [Fig.
=12 where the perturbations of the wave functions in thel6(b)]. In accord with experimefi they first rise with en-
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energy and how new types of motions appear when climbing
up the ladder were the main purposes of the foregoing sec-

tions. Classical mechanics, especially the concept of periodic
orbits and their continuation/bifurcation diagram, have been
proven to be exceedingly helpful in understanding the devel-
opment of the quantum mechanical states. Nevertheless, if
one wants to obtain a clearest picture, it is absolutely neces-
sary to visually inspect all wave functions, even though that
is a tremendous task. Automatic assignments in terms of, for
example, projections of wave functions on zero-order wave
functions, works at low energies, but is bound to fail when
mixing of (zero-ordey states becomes too strong.

The most surprising finding was the gradual change of
the polyad structure at the bottom of the polyad, when the
states (0,0) with wave functions quite restricted in the H—
C—P bending angle turn into (OR),gy States, whose wave
functions have a completely different bending behavior. Al-
though this transition sets in rather abruptly in a narrow en-
ergy regime, early signs of these structural changes are al-
ready found at lower energies. The onset of this change is
accurately predicted by classical mechanics in form of the
birth of saddle-node periodic orbits. In contrast to classical
mechanics where tH&N]-type POs come into existence at a
precise energy, in quantum mechanics the structural change

P is, as expected, somehow smeared out. It should be noted
_5') 0 _Ai 0 _:; 0 _2' 0 that the[r 1A]-type wave functions do not completely cease
E [eV] to exist. At higher energies one can find wave functions that
have, if the contours plotted are chosen in a special way, the
FIG. 16. (a) Rotational constant8,, for the lowest 700 states as function of character of (O,GP,) wave functions. However, the examples
energy. The consFan_ts for the thr(_ee overtone progressioRs)0,(0,0P), found by us were strongly mixed with other states in the
and (0,0P)gy are indicated by solid dots and drawn separatel¢bjn ; . . .
energetic proximity. In other words, quantum mechanics still
“feels” the existence of the underlyingr 1A] POs.
ergy and then monotonically decrease withThe B,y val- There are several interesting questions to be asked and
ues for progression (0/@) monotonically decrease witR  classical mechanics can provide possible answers to them.
up to P=12. In accord with our calculations, the measuredFirst, why does the change begin at the bottom of the poly-
value for(0,0,) is slightly lower than the rotational constant ads and not at the top, i.e., why do the (P states turn
for the vibrational ground statérable VIII in Ref. 36. As into the saddle-node wave functions rather than the,q,
discussed in Sec. IV the (OR), progression only extends to levels? We think the answer to this question has to do with
P=12. State(0,0,13 is of the[SN] type and because of the the different stabilities of theB]- and[r 1A]-type POs. The
essentially different angular shape, this state has a mudiB] periodic orbits and likewise the corresponding wave
larger rotational constant. Stat€8,0,14 and (0,0,19 are  functions are comparably robust and exist up to very high
strongly perturbed and therefore not included in the progresenergies; in addition the anharmonicity is quite small in this
sion. The many states between theR,0) progression on mode. One reason for this pronounced stability might be the
one hand and the (0)gy progression on the other have existence of the potential trough seen at small angles and
more or less pronouncg®N] character and therefore rota- larger CP bond distancesFig. 1), which—loosely
tional constants which are larger than those for the purgpeaking—*guides” thg B] orbits. The sibling POs of the
[B]-type states. [r1A]-type avoid this region of the PES and intuitively are

Except for the lower states of the F30) progression, expected to be less stable. Actually, they eventually cease to
the rotational constants for states RM)) and (0,0P) de-  exist at around-2 eV, an energy where tHeéB] orbits are
crease with energy. This behavior can be explained by thstill intact. Moreover, the classical bifurcation analysis
continuous increase of the expectation value of the CRhowed that there is a second branch of trajectofiekB],
stretching coordinater), with the degree of excitation. On which are unstable and therefore create regions of instability
the other hand(r) remains approximately constant with  in their neighborhood. Thus, it appears that first the quantum
for the[SN] states and so does the correspondingalue. mechanical states, which follow the less stable POs, change

their character.
V1. DISCUSSION Second, why do the SN POs and the corresponding

Demonstrating how the vibrational energy spectrum ofquantum states come into existence so suddenly with en-
HCP, a relatively simple triatomic molecule, changes withergy? According to general results of non-linear dynamics
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is not just found at high energies but even for the lowest
‘.(0’10’0) \‘.‘(0’7’3) 3,’(0’3’ ") I (0,0,10) excited states. A detailed discussion of DCP will be pub-
R NS j;, % lished at a later date.
o e 25e” = HCP The accuracy of our PES is not sufficient to compare
directly the calculated transition energies and rotational con-
(0,0,10) (0,3,7) (0,7,3) (0,10,0) stants with the experimental results. For example,_ the_ dis-
- fee - crepancy for the fundamental of the PQQ) progression is
r B fie ;yf,,,,'{v L) 53 cm %, which accumulates up to about 300 chfor the
DCP 14th overtone. Beyon& = 15 the deviation becomes smaller
again. This large mismatch and the relatively large density of
v states makes it impossible to uniquely relate the measured
FIG. 17. Comparison of selected HCP and DCP wave functions in polyadfansitions to the vibrational levels calculated. Therefore, we
P=10. For more details see Fig. 7. are unable to identify the calculated levels that correspond to

the levels for which unusually large rotational constants have
been measured. At present time the comparison can only be

theories, saddle-node bifurcations occur as a consequence de qualitatively.
tangencies of the stable and unstable manifolds of unstable Itis plausible to speculate that the onset of the perturba-
periodic orbits. As predicted by the Newhouse theofdm, tions detected in the (;,0) progressioff with v,>16 (in
when these invariant objectéhe manifold$ touch each our notation is caused by the structural changes of the quan-
other, new periodic orbits emerge. By way of this mechatal wave functions found in the present study. Betwegn
nism classical trajectories find ways to penetrate into regions 17 and 19 the measuré,; value changes substantially by
of phase space, which were not sampled by periodic orbits @bout 8% and takes on values which are in very good agree-
lower energy. Characteristic examp|es are the saddle-noggent with the calculated rotational constants for the SN
bifurcations which appear above potential barriers. The unstates. Although this agreement might be coincidence, we
stable POs that originate at the top of the barrier give rise thave the impression that the sudden increase signals some
periodic orbits which can visit the minima on both sides ofstructural changes of the kind described by us. In an attempt
the barrier®?258 The remarkable observation is that theseto assess the existence of th&N]-type states, Ishikawa
saddle-node POs create stability in otherwise highly unstablét al** performed an additional SEP experiment and indeed
regions of phase space. Studies like the present one demdigund bands having the characteristics of the [®)gy
strate how quantum mechanics can “recognize” these restates; relatively large rotational constants, a large anharmo-
gions and accommodates the eigenfunctions accordingly. Nicity, and an energetic origin in reasonable agreement with
Saddle-node bifurcations may also appear inside poterpur predictions.
tial wells when the curvature of the potential changes What is needed is a better potential energy surface in
abruptly>>®° This is the case for HCP. As we can see fromorder to directly compare with the experimental spectra. At
Fig. 2 the saddle-node bifurcations emerge when the miniPresent time theab initio calculations of Kopuf are ex-
mum energy path signals changes in the slope of the PES. ¥gnded to cover the full angular regime from H-CP to
is really astonishing that the quantum mechanical states ¢¢P—H. Once this PES is available we should be in the posi-
the SN type appear at about the same energies and shdi@n to make a rigorous contact with experiment.
distinct progressions with different energy spacings. Thisun- ~ Recently there has been some interest in extracting in-
derlines the strong influence the differef8N]-type POs formation about periodic orbits and their bifurcations from
have on the quantum mechanical world. guantum mechanical spectra alone, without actually search-
The third question concerns the relative importance ofng for POs?*®?The tool is a windowed Fourier transforma-
kinetic energy coupling and coupling of the modes due to thdion of the quantum mechanical spectrunicalled
potential. In the initial phase of our study we believed that itvibrogran®?), i.e.,
is the pronounced potential trough mentioned above that ex- .
plains the bowed shape of th&]-type POs and the corre- A(T’E):j S(e)f(E—e)e '“Tde, (6)
sponding wave functions. However, if that were true, how -
can we explain—in terms of the shape of the PES—the pa
ticular form of the[r1A] POs and wave functions? In doing
the mass variation study discussed in Sec. IV we found out
that the interplay between the kinetic energy term and the 2(6):2 5(e—€n), @)
potential is important. In Fig. 17 we show wave functions for
HCP in polyadP=10 in comparison to the corresponding and the sliding windowf(e) is a Gaussian. The results,
wave functions for DCP. Although there is some mixing be-which we obtained when taking the calculated vibrational
tweenr and y, the wave functions for DCP have a much energies without any weighting, were not satisfactory. Espe-
stronger local-mode character, i.e., they are much bettesially the sudden occurrence of the saddle-node POs could
aligned along the and they axis. The (0P,0) bending not be seen. A clearer picture emerged, however, when
states extend along the isomerization path and this behavi@bsorption-type spectra, calculated with localized initial-state

"Where the spectruri(e) is given by
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ergy, suddenly comes into existence at a relatively high
energy. At the same time the polyad structure gradually
disintegrates with the wave functions at the bottom of
the polyad turning into the isomerization bending states.
(4) Classical periodic orbits quantitatively describe all the
findings observed in the quantum calculations. In par-
i ticular, they closely follow the backbone of the quantal
wave functions and explain the sudden appearance of the
isomerization-type bending states as the consequence of
a saddle-node bifurcation. They even predict the abrupt
change of energy spacing between neighboring saddle-
-0 —10 E_[?’e‘?,] =0 -Lo node overtones through the generation of new saddle-
node periodic orbits at higher energies.
FIG. 18. Vibrogram |A(T,E)|> obtained from quantum mechanical (5) The two classes of bending states, those which are con-
absorption-type spectra as described in the text. The soli(_j Ii'nes are the fined in the angular coordinate and those which follow
gigggr_gi?s?endem halt-periods of fig]- and[ SN1AJ-type periodic clas- the isomerization path, have distinctly different moments
of inertia reflecting the small- and large-amplitude bend-
ing motions. The resulting rotational constants for rota-
wave functions, were Fourier transformed. Thus, in order to  tion about an axis perpendicular to the CP axis agree
see, for example, theB] POs we put Gaussian wave func- well with the two regimes observed in recent SEP spec-
tions on the corresponding orbits, calculated the overlap with  troscopy experiments.
all vibrational states and used this spectrum in @y. The (6) Although a direct comparison with experimental data is,
same was done with wave packets localized on [BH] because of the limited accuracy of the potential energy
periodic orbits. Various vibrograms were compiled into a  surface used, not possible, our calculations qualitatively
total vibrogram with the interference between different wave  explain several observations such as the abrupt onset of
packets taken into account. An example is shown in Fig. 18.  perturbations observed in the experimental SEP spectra,

T [fs]

20 I . .

One clearly sees the bifurcation aroun@ eV. For compari- the existence of states with two classes of rotational con-
son, we also depict the half-periods of ff&] and[ SN1A] stants, as well as the reality of states with unusually large
periodic orbits and good overall agreement is obserige- anharmonicity.

cause in the classical calculations the angular coordinate is
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