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We present quantum mechanical bound-state calculations for HCP(X̃) using anab initio potential
energy surface. The wave functions of the first 700 states, corresponding to energies roughly
23 000 cm21 above the ground vibrational state, are visually inspected and it is found that the
majority can be uniquely assigned by three quantum numbers. The energy spectrum is governed,
from the lowest excited states up to very high states, by a pronounced Fermi resonance between the
CP stretching and the HCP bending mode leading to a clear polyad structure. At an energy of about
15 000 cm21 above the origin, the states at the lower end of the polyads rather suddenly change their
bending character. While all states below this critical energy avoid the isomerization pathway, the
states with the new behaviour develop nodes along the minimum energy path and show
large-amplitude motion with H swinging from the C- to the P-end of the diatomic entity. How this
structural change can be understood in terms of periodic classical orbits and saddle-node
bifurcations and how this transition evolves with increasing energy is the focal point of this article.
The two different types of bending motion are clearly reflected by the rotational constants. The
relationship of our results with recent spectroscopic experiments is discussed. ©1997 American
Institute of Physics.@S0021-9606~97!01546-8#
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I. INTRODUCTION

Spectroscopy is an extremely powerful tool for det
mining the structure of molecules.1 Usually one starts at low
excitation energies, deep inside the potential well, and de
ops a simple Hamiltonian which is able to reproduce
measured spectrum. With increasing energy it becomes
essary to gradually extend the Hamiltonian model in orde
take into account higher order effects such as anharmo
ties or couplings between the different modes. However,
though this rather general approach has been applied
successfully in the past, it is uncertain how far it can
extended. If the energy approaches the dissociation thr
old, the mixing between states normally becomes so str
that simple models are bound to fail. Likewise, if the ener
comes close to an isomerization barrier, some new dyna
cal behaviors are expected to develop, which may be diffi
to be described by extending pictures appropriate at m
lower energies. Thus, either some new models have to
formulated or, alternatively, the problem has to be a
proached from a different perspective, that is, the exact
lution of the Schro¨dinger equation using a global potenti
energy surface~PES!.
9818 J. Chem. Phys. 107 (23), 15 December 1997 0021-9606/
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Significant advances have been made in the last year
least for small molecules, in generating accurate PESs an
solving the multidimensional Schro¨dinger equation using
these surfaces.2,3 A recent and prominent example
HCO.4–6 Nonetheless, when one considers highly exci
molecules, the density of states is large and conseque
hundreds or even thousands of eigenfunctions have to
calculated, which is still a formidable task. Moreover, even
we are able to accurately compute a dense spectrum o
brational levels, something which becomes more and m
feasible with modern computers, the inspection of all the
wave functions and their assignment to sets of quantum n
bers as well as the extraction of dynamics information fro
the spectrum are still big challenges.

Because of the problems related to the ‘‘understandin
of spectra—with ‘‘understanding’’ we mean not just the a
signment to quantum numbers, which anyhow becomes m
and more questionable with increasing energy, but prima
the distillation of dynamical information encoded in th
spectra—in the last years tremendous efforts have been m
to develop techniques for recognizing patterns and hierar
cal coupling in highly congested and complex spectra.
can broadly divide these techniques into statistical and
97/107(23)/9818/17/$10.00 © 1997 American Institute of Physics
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9819Beck et al.: Vibrational states of HCP
namical. In the first category we classify methods which e
ploy a special kind of sorting the spectral lines for patte
recognition. Among these techniques we mention the hie
chical tree method of Davis7,8 and the extended crosscorr
lation function method of Field and co-workers.9 The second
category incorporates all semiclassical methods which tr
establish a correspondence between quantum states and
classical objects.10 Once, such a correspondence has b
achieved the extraction of dynamics is facilitated throu
visualization of the nuclear motions offered by classical m
chanics.

The validity of semiclassical correspondence is still
open problem, especially at high energies where the clas
dynamics turns to be predominantly chaotic. However, a
the pioneering works of Gutzwiller11–13 and Heller14,15 nu-
merous numerical applications have demonstrated the im
tance of classical mechanics and especially of periodic or
~PO! in understanding the localization of wave functions
configuration space, which in turn is helpful for understan
ing spectral patterns.16–19

The concept of POs for tracing the dynamical and sp
troscopic characteristics of a polyatomic molecule becom
particularly powerful when it is applied in conjunction wit
continuation techniques in order to compute families of P
and their energy dependence.20 This then leads to the con
struction of continuation/bifurcation diagrams, which are e
ceedingly helpful for recognizing how spectra change fr
the bottom of the potential well to highly excited states. T
usefulness of POs has been demonstrated for a numb
triatomic molecules,19 and recently even for acetylene, a pr
totype tetratomic molecule.21 A few interesting phenomen
have been discovered such as the importance of saddle-
states22 and their connection to the isomerization proces
as well as the phenomenon of complex instability.23 A mol-
ecule, for which the understanding of its ener
spectrum—on the basis of only the bare quantum mechan
calculations—would be difficult without POs and the
continuation/bifurcation diagrams, is HCP in its ground ele
tronic state. In this article we demonstrate how these cla
cal tools can be used to elucidate the patterns in the quan
mechanical spectrum of HCP calculated with anab initio
PES.

Recently, the dispersed fluorescence and stimula
emission pumping spectroscopy of phosphaethyne, H
performed by Ishikawaet al.24 have raised attention. HCP i
similar to HCN. Both of these molecules have linear equil
rium geometries, but they differ in the stability of their line
isomers. While CN–H is a stable isomer, CP–H correspo
to a saddle point on the potential energy surface. The la
has been confirmed by a number ofab initio calculations at
several levels. Lehmann and co-workers25 carried out MP4
type calculations for the bending potential and showed
CP–H is a maximum and the same result has been obta
by us with CASSCF/MRSDCI calculations~Sec. II!.

Electronic, vibrational, and rotational spectra of HC
have helped to determine the equilibrium geometries
spectroscopic constants of the ground and the first exc
J. Chem. Phys., Vol. 107, N
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electronic states.25–29 In order to find signatures of large
amplitude angular motion, i.e., isomerization, Field and c
workers have exploited theÃ–X̃ and C̃–X̃ transition bands
in an attempt to access high lying bending vibration
states.24 The former band is believed to follow the pur
bending overtones (0,v2,0), with v2 ranging from 26 to 42,
which span an energy interval of;3 eV above the vibra-
tional ground state. This energy regime is expected to
sufficiently high to allow large-amplitude motion of the
atom around CP.

By fitting the spectra to well known spectroscopic mo
els for linear molecules it was established, however, that
spite the energetic opening of a whole new portion of
coordinate space the spectrum is surprisingly regular, as
also found by Lehmannet al.25 some time ago. Nevertheles
two quite surprising observations were made which indic
that indeed a structural change from mainly H–CP to CP
motion may be entangled. First, withv2>32 perturbations of
the pure bending overtones set in which were absent at lo
excitations. Second, the vibrational fine structure consta
of the (0,v2,0) levels change abruptly aroundv2536. For
example, the rotational constantB0 rises suddenly by abou
8% from v2534 to v2542. One possible explanation fo
such a relatively large increase is a substantial change o
molecular structure. The authors conjectured, on the bas
our ab initio PES, that the change in the character of H–
stretch from dominantly H–C to P–H motion should caus
large change in the vibrational level structure and theref
could lead to the sudden turning on of perturbations as w
as the abrupt changes in the fine structure constants.24

In order to shed some light on these rather surpris
findings we have carried out three-dimensional quantum
chanical bound-state calculations employing anab initio
PES. In a recent communication~which will be referenced as
paper I in what follows! we have presented some prelimina
results from our classical and quantum mechani
calculations.30 The main result was the finding of two dis
tinct families of bending states; one with wave functio
confined to small bending angles and the other one samp
the isomerization path all the way from H–CP to CP–H. T
former start at low energies and persist to very high energ
well above the isomerization plateau, whilst the latter oc
abruptly at high energies. Stable periodic orbits provide
clear-cut assignment. The different types of bending mot
lead to distinctly different moments of inertia and therefo
to different rotational constants. Even though the accurac
the PES is not good enough to allow direct comparison w
the experimental data, it is safe to conjecture that the exp
mental observations bear some relationship with our pre
tions of different types of bending motion.

Inspired by our results, Ishikawaet al.31 have performed
new SEP experiments in the energy region
13 400– 17 500 cm21 and indeed found strong evidence f
the existence of two distinct families of bending state
which they attributed to normal-mode and isomerizatio
type states, as predicted by the periodic orbit analysis. Th
new experiments, in turn, encourage us to continue our
o. 23, 15 December 1997
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9820 Beck et al.: Vibrational states of HCP
oretical analysis of the HCP vibrational spectrum at h
energies.

In this article we present in detail the classical and qu
tum mechanical calculations for total angular momentumJ
50. The main emphasis lies on the development of the sp
trum from low energies, where the dynamics is simple a
regular, to energies where large-amplitude bending motio
possible and where the spectrum gradually becomes m
irregular. In I only the overtones of the various progressio
were highlighted; in the present article we discuss all wa
functions and analyze their structural changes with incre
ing energy.

The paper is organized as follows: in Sec. II we pres
the potential energy surface used in these calculations,
Sec. III features the periodic orbits and their continuatio
bifurcation diagrams. In Sec. IV the quantum mechani
results are presented in detail followed by a discussion of
influence of the different bending motions on the rotatio
constants in Sec. V. In Sec. VI we discuss the relationship
the theoretical predictions to the experimental observati
and a summary of the main results ends this article in S
VII.

II. AB INITIO POTENTIAL ENERGY SURFACE

The HCP ground-state potential energy surface~PES!
has been calculated byab initio methods on the multirefer
ence configuration interaction~MRCI! level using all singly
and doubly excited reference wave functions obtained
complete active space self-consistent field~CASSCF! calcu-
lations. A triple-zeta-polarization atomic basis set is e
ployed. For the CASSCF calculations we have chose
electrons and 7 orbitals as the active space giving rise to
and 260 reference configuration state functions for linear
bent nuclear geometries, respectively. The MRCI calcu
tions then result in;78 000 and 156 000 configurations fo
the two symmetry classes. The calculations have been
formed with theMOLPRO program package.32

We have computed a total of 157 energies for differ
geometries sampling a large portion of the coordinate sp
especially along the isomerization path. The points are s
sequently fitted to an analytical expression of the Sorb
Murrell form,33

V~R1 ,R2 ,R3!5V~3!~R1 ,R2 ,R3!1(
i 51

3

Vi
~2!~Ri !. ~1!

with R1 , R2 , andR3 being the HC, CP, and HP separation
respectively. The two-body terms are of the form

Vi
~2!~Ri !52Di~11a1,ir i1a2,ir i

21a3,ir i
3!

3exp~2a1,ir i !, ~2!

where r i5Ri2Ri
(e) and theRi

(e) are the equilibrium bond
lengths of the three diatoms. The three-body term is writ
as
J. Chem. Phys., Vol. 107, N
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V~3!~R1 ,R2 ,R3!

5V0)
i 51

3 F12tanhS g id i

2 D GF(
k

ckPk~s1 ,s2 ,s3!G , ~3!

where thePk(s1 ,s2 ,s3) are functions in the variables

s150.4161d120.0975d210.9041d3 ,

s2520.9060d110.0400d210.4213d3 , ~4!

s3520.0772d120.9944d220.0717d3

~see Table II!, andd i5Ri2Ri
(0) . The two-body parameter

a1,i , a2,i , etc. and the coefficients in Eq.~4! have been taken
from Refs. 34 and 35. The coefficientsck and the reference
geometriesRi

(0) in the three-body term are fitted to theab
initio points. All parameters of the potential function a
summarized in Tables I and II.

The subsequent classical and quantum mechanical ca
lations are performed in Jacobi coordinatesR, the distance
from H to the center-of-mass of CP,r , the CP separation
andg, the angle between the vectorsR andr ~with g50 for
linear HCP; see the inset in Fig. 2!. In what follows all en-
ergies are quoted with respect to the minimum of H1CP
(r e), i.e., the constantDe

CP55.3568 eV is added to the ful
potential. In this normalization the energy at the equilibriu

TABLE I. Parameters of diatomic potentials.

a1 /Å 21 a2 /Å 22 a3 /Å 23 De /eV Re /Å

CH(ã 4S2) 5.5297 8.7166 5.3082 2.8521 1.082
CP(X̃ 2S1) 4.5794 5.9231 3.6189 5.3568 1.562

HP(X̃ 3S2) 6.2947 12.9232 9.6841 2.0559 1.402

TABLE II. Parameters of the three-body potential.

Pk(s1 ,s2 ,s3) ck Pk(s1 ,s2 ,s3) ck

s1 20.498 438 s2 2.033 11
s3 22.888 22 s1

2 21.124 21
s1s2 3.816 18 s1s3 22.218 65
s2

2 1.085 68 s2s3 2.268 83
s3

2 1.214 87 s1
3 20.105 983

s1
2s2 2.720 32 s1

2s3 22.304 62
s1s2

2 2.159 80 s1s2s3 20.671 877
s1s3

2 24.679 40 s2
3 0.027 829 5

s2
2s3 0.962 413 s2s3

2 23.952 73
s3

3 212.732 8 s1
4 0.090 820 2

s1
3s2 1.293 98 s1

3s3 21.158 38
s1

2s2
2 1.338 36 s1

2s2s3 20.496 434
s1

2s3
2 22.997 57 s1s2

3 20.633 082
s1s2

2s3 0.566 250 s1s2s3
2 23.253 95

s1s3
3 214.803 2 s2

4 0.088 385 8
s2

3s3 20.082 962 5 s2
2s3

2 0.125 388
s2s3

3 22.128 96 s3
4 218.082 9

s2
5 0.098 932 3

V0 20.953 654 g1 1.364 91
g2 1.437 00 g3 1.856 71
R1

(0) 2.009 9 R2
(0) 1.422 3

R3
(0) 2.426 2
o. 23, 15 December 1997
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9821Beck et al.: Vibrational states of HCP
is 25.2361 eV~R54.1572a0 , r 52.9444a0 , g50!. A FOR-

TRAN program of the potential energy surface is availa
~Ref. 10 in paper I!.

Two-dimensional contour plots of the HCP PES are
picted in Fig. 1. Note, that there is no minimum for th
CP–H linear configuration but only a saddle point; the up
part of Fig. 1 is misleading, becauseR is fixed in this repre-
sentation. The potential contour along the minimum ene
path in the angular coordinate is shown in Fig. 2; in order
calculate this energy profile, the potential has been m
mized inR andr for a fixed value ofg. The energy and the
coordinates of the CP–H saddle point are21.8935 eV,R
53.5634a0 , r 53.0904a0 , andg5180°, respectively. For
the subsequent discussion it is worth underlining that,
seen in Figs. 1~a! and 1~b! as well as Fig. 2, the behavior o
the PES changes quite dramatically in the angular inte
between 60° and 90°. This is the region where the bond
changes its character and H–CP begins to more and mor
over to CP–H.

Neither the level of theab initio calculations nor the
number of calculated points and the analytical fit have b

FIG. 1. Contour plots of the HCP potential energy surface as functionsr
andg for fixed value ofR ~a!, R andg for fixed value ofr ~b!, andR and
r for g50 ~c!. Energy normalization is so that H1CP(r e) corresponds to
E50. The highest contour is forE50 and the spacing isDE50.5 eV. Also
shown are the projections of selected classical periodic orbits;~a! and ~b!
short dashes,@B#, E22.509 eV; long dashes,@r1A#, E522.500 eV; solid
line, @SN1A#, E522.582 eV. ~c! long dashes,@r #, E522.507 eV;
dashed–dotted line,@R#, E522.501 eV.
J. Chem. Phys., Vol. 107, N
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designed to reproduce the true PES near the equilibrium w
greatest possible accuracy. Our focus is the vibrational
namics of highly excited states near the H–CP↔CP–H
isomerization. Therefore it does not come as a surprise
the fundamental excitation energies are reproduced only w
modest success. The experimental energies for the se
overtone of the bending mode,~020!, and the first overtones
of the CP stretching,~001!, and the H–CP stretching,~100!,
modes are 1332.3 cm21, 1280.9 cm21, and 3216.9 cm21, re-
spectively~Table XI of Ref. 36!. The corresponding calcu
lated values are 1283 cm21, 1234 cm21, and 3330 cm21.
Two recently publishedab initio calculations concentrate o
the region around the equilibrium and therefore yield mu
better agreement with these experimental data.37–39

III. PERIODIC ORBITS AND PHASE SPACE
STRUCTURE

Periodic classical orbits~POs! are located by multiple
shooting algorithms and by damped and quasi-Newton ite
tive methods.40 According to the Weinstein and Mose
theorems41,42 for a system withN degrees of freedom ther
are at leastN families of periodic orbits, which emanate from
the stable equilibrium points of the potential energy surfa
These families are called principals and correspond to thN
different vibrational modes at energies not too high abo
the minimum. At a saddle point of a potential one can a
find principal families of POs which, however, are unstab
in those directions along which the potential descends.
following the evolution of the principal families with tota
energy, one can locate new families of POs, which bifurc
from the parent ones; they have either the same period
the original POs or multiples of them. The theory of bifu
cations of POs as well as their stability analysis is well d
veloped, and the representation of numerical results is c
monly given by a continuation/bifurcation diagram.43–45

FIG. 2. Potential cut along the minimum energy path as a function of
angle g. The two stretching coordinatesR and r are optimized. Energy
normalization is so that H1CP(r e) corresponds toE50. The four arrows
indicate the onset of the periodic orbits of the types@SN1A#, @SN2A#, and
@SN3A# and the position of the first@SN# quantum state~see text!. The inset
defines the Jacobi coordinates used in the present study.
o. 23, 15 December 1997
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9822 Beck et al.: Vibrational states of HCP
Periodic orbits are either stable or unstable. A perio
orbit is stable when trajectories started close to it stay in
vicinity for all times. On the other hand, a PO is unstab
when trajectories, that are launched close to it, depart ex
nentially, i.e., the ‘‘distance’’ between the two trajectories
phase space grows exponentially with time. Whether a p
odic orbit is stable or unstable is determined by the eig
values of the monodromy matrix, which is calculated by
tegrating the linearized equations of motion in the vicinity
a PO together with Hamilton’s equations.44,45 If all eigenval-

FIG. 3. ~a! Continuation/bifurcation diagram. Plotted is the variation of t
initial CP stretching coordinate~Ref. 46! as function of energy. The con
tinuous lines represent stable periodic orbits whereas the dots indicat
stable POs. See the text for more details. The arrow indicates the ener
the ~0,0,0! ground vibrational state.~b! The periods of the@B#-, @R#-, @r #-,
@r1A#-, and@SN#-type POs as functions of the energy.
J. Chem. Phys., Vol. 107, N
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ues of the monodromy matrix are pairs of complex conjug
numbers with modulus equal to one, the PO is stable. If
or two pairs of the eigenvalues are real numbers~they come
in pairs of l and 1/l!, the neighboring trajectories deviat
exponentially from the PO which is then called singly
doubly unstable, respectively. For systems with three
more degrees of freedom it may also happen that four eig
values are related to each other according tol, 1/l, l* , and
1/l* with modulus different from one; the PO is then calle
complex unstable.

In Fig. 3~a! we show a projection of the continuation
bifurcation diagram of HCP in the (E,r ) plane. The diagram
is constructed by plotting the initial value of one particul
degree of freedom~the CP bond distancer in the present
case! of the POs as a function of the total energyE.46 If the
energy of the system is changed smoothly, then the in
conditions of the PO are also expected to change smoo
except at bifurcations. The actual shape of the curves in
3~a! is of course irrelevant; important are only the localiz
tions of bifurcations of families of POs. Continuous lines
the figure represent stable periodic orbits, whereas dots m
unstable ones. We do not distinguish in this diagram
particular type of instability; we note however, that som
families do show double and even complex instability,
least for small energy intervals as will be discussed later
The lower part of Fig. 3 depicts the periods of the period
orbits vs energy. In Table III we list the period and the initi
coordinates and momenta for one representative example
of each family of POs located.47

There are three principal families of POs, one for ea
normal vibrational mode. They will be denoted by@R#, @r #,
and@B#, respectively~B stands for bending!. Because of the
linearity of HCP at the equilibrium point the two stretchin
periodic orbits,@r # and @R#, are constrained to lie in the
g50 plane for all times. The@r #-type POs represent mainl
motion along the CP bondr , whereas@R#-type POs show
motion mainly along the H–CP stretch coordinateR; ex-
amples are depicted in Fig. 1~c!. For very low energies, the
third principal PO illustrates motion predominantly along t
bending angleg. At higher energies, however, it represents

n-
of
7

TABLE III. EnergiesE, periodsT, and initial conditions for selected periodic orbits.

PO E/eV Ta Rb r g pR pr pg

@r # 22.992 930 4 2.8870 2.396 178 3 1.920 793 4 0.000 000 0 0.449 898 921.103 293 1 0.000 000 0
@r1A# 23.099 328 7 5.8350 2.446 729 7 1.856 564 6 0.106 422 2 0.129 082 921.964 504 7 1.983 991 0
@R# 23.004 148 8 1.1980 2.577 725 5 1.545 207 1 0.000 000 0 1.078 571 321.156 842 9 0.000 000 0
@R1A# 22.290 077 0 2.6269 2.590 402 0 1.492 402 2 0.000 000 0 1.128 202 622.315 557 8 0.000 000 0
@B# 23.069 214 7 5.5700 2.119 118 6 1.467 732 0 0.230 794 2 20.160 271 6 3.050 687 4 2.867 355
@SN1A# 23.026 447 4 7.8251 2.227 777 0 1.589 036 4 20.304 198 9 20.543 705 3 0.469 745 8 23.561 653 0
@SN1B# 23.135 209 1 6.8771 2.281 998 2 1.608 939 2 0.098 053 3 0.031 112 9 0.064 933 024.026 377 6
@SN2A# 22.603 105 6 10.2900 2.243 110 0 1.561 766 8 0.107 014 8 20.027 608 3 20.153 367 7 24.506 792 4
@SN2B# 22.611 706 2 9.9900 2.237 286 2 1.564 291 9 0.124 621 2 20.061 508 8 20.142 299 9 24.484 219 0
@SN3A# 22.122 777 2 16.8320 2.315 583 3 1.584 481 7 0.016 886 4 0.013 950 620.023 606 8 24.977 894 1
@SN3B# 22.515 965 5 15.4320 2.237 877 2 1.573 123 7 0.100 093 8 20.078 068 2 20.056 191 9 24.599 228 1

aOne time unit corresponds to 10.18 fs.
bDistances in Å, angle in rad, and masses in units of 1/12 of12C.
o. 23, 15 December 1997
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9823Beck et al.: Vibrational states of HCP
mixture of bending and CP stretching motion as will be d
cussed below.

The family of@R#-type POs remains stable up to abou
eV above the bottom of the well. It becomes singly unsta
at 22.454 eV but turns stable again at21.954 eV. Then, it
stays stable up to20.707 eV where again it becomes sing
unstable. However, the real eigenvalue of the monodro
matrix never exceeds the value of 1.2, that is, the POs of t
@R# remain reasonably stable for almost the entire ene
regime up to the dissociation threshold. A bifurcating fami
denoted by@R1A# ~branchA of the first bifurcation!, comes
into existence at22.454 eV, where the@R#-type POs be-
come unstable for the first time. These POs are also confi
onto theg50 plane. The period of the new family is rough
twice as large as for the original@R# PO.

The bend family,@B#, is also found to be stable up t
energies close to dissociation. A prototype is shown in F
1~a! and 1~b! and more examples can be found in Figs. 1 a
2 in paper I. The characteristic feature of these POs is t
confinement to relatively small angles; they never expl
angles greater than 40°–50° irrespective of the total ene
This behavior seems to be counterintuitive; by pump
more and more energy into the bending mode one exp
the bending-type orbit to follow the isomerization path
Fig. 1~b!. However, that is not the case. Increasing the
ergy gradually pushes the orbit towards stretching of the
mode rather than increasingg. This rather unexpected beha
ior is the result of strong mixing between the bending and
CP stretching mode.

Contrary to the other two principal families, the@r # fam-
ily shows an early bifurcation at24.872 eV, i.e., only 0.358
eV above the minimum. For comparison, the energy of
ground vibrational state is24.866 eV, that is, the bifurcation
occurs even below the lowest quantum mechanical state~In
the next section we shall show that there are no quan
mechanical states with wave functions following the@r #-type
PO.! At the bifurcation point a pair of eigenvalues of th
monodromy matrix is equal to21, i.e., this is a bifurcation
by reflection, and we denote the bifurcating family as@r1A#
~branchA of the first bifurcation!. Beyond the point of bifur-
cation the@r # family becomes singly unstable and remai
singly unstable up to10.401 eV. However, the real eigen
value of the monodromy matrix, which characterizes the
gree of the instability of these POs, never exceeds the v
of 1.74. The bifurcating POs,@r1A#, are stable and remai
stable up to22.056 eV, where they abruptly cease to exi
Actually, from the bifurcation diagram we can see that t
@r1A# family originates from a reverse saddle-node bifurc
tion occurring at the energy of22.056 eV. Here it merges
with a branch of unstable periodic orbits, which is term
@r1B#. We found it very difficult to propagate this unstab
branch backwards in energy. Numerical difficulties arose
cause of nearby unstable POs which cause problems in
convergence of the Newton–Raphson procedure, rather
the magnitude of the instability of the@r1B#-type POs. In
contrast to the@r # POs, the POs of type@r1A# are not con-
fined to theg50 plane but sample regions of coordina
space with nonlinear geometries. Actually, they are symm
J. Chem. Phys., Vol. 107, N
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ric with respect tog50 and therefore their period is roughl
twice the period of the@r # POs@see Fig. 3~b!#. An example
is shown in Figs. 1~a! and 1~b! ~see also Figs. 1 and 2 in
paper I!. They show a behavior in the (r ,g)-plane, which is
opposite to the behaviour of the@B#-type POs.

As seen in Table III as well as Fig. 3~b! the periods of
the @B# and @r1A# POs are almost identical; the same
obviously true for the quantum mechanical frequencies
longing to the states, which correspond to these POs.
this accidental coincidence of periods which causes the r
nance and polyad structure governing the entire HCP sp
trum up to high energies. It is important to underline that t
@r1A# POs, like their counterparts of type@B#, are confined
to small bending angles. In other words, none of the perio
orbits emanating from the bottom of the well samples
isomerization path.

The first POs that extend to angles larger than 40°,
towards the CP–H side of the PES, are found to occur s
denly at an energy of23.1526 eV or 2.08 eV above th
bottom of the well. They emerge from a saddle-node~SN!
bifurcation and therefore we denote them as@SN1#. There are
again two branches, a stable one, which will be denoted
@SN1A#, and an unstable one,@SN1B#, which we did not
follow as function ofE. A representative example for branc
A is depicted in Figs. 1~a! and 1~b! ~see also Figs. 1 and 2 in
paper I!. The @SN1#-type POs follow closely the minimum
energy path in the (R,g)-plane. However, in contrast to th
@B#- and @r1A#-type periodic orbits they show only little
variation in ther coordinate, less than about 0.2a0 .

The originally stable POs of the@SN1A# family become
singly unstable at22.927 eV, change into complex unstab
at 22.899 eV, and then become again stable at22.781 eV.
Finally, they become once more singly unstable at22.668
eV and remain singly unstable up to the highest energy
have followed them. The SN1 branch does continue to en
gies higher than shown in Fig. 3. However, it becomes m
and more difficult to find these types of trajectories a
therefore we did not systematically follow the SN1 bran
any further. At higher energies we have located additio
saddle-node bifurcations at22.612 eV and22.522 eV, giv-
ing rise to new types of periodic orbits. These POs, wh
are denoted as@SN2# and@SN3#, penetrate deeper and deep
into the CP–H hemisphere. The@SN3#-type POs show some
oscillatory behaviour in the (R,g)-plane close to their turn-
ing points at larger angles. From Fig. 3~b! it is apparent that,
in contrast to the@B#- and@r1A#-type orbits, the periods o
the orbits of the@SN1# and @SN2# families strongly increase
with energy. This is readily understandable because the@SN#
orbits extend to larger and larger angles where the poten
becomes gradually flatter~see Fig. 2!.

The overall dynamical behavior of HCP, as it emerg
from the continuation/bifurcation diagram, is rather regul
despite the early appearance of a bifurcation and the appr
mate 1:1 relationship between the vibrational periods of
@B#- and the @r1A#-type POs. Instability is developed a
relatively high energies and only when the bending an
extends well into the CP–H side of the potential. Because
bending family remains stable for the entire energy inter
o. 23, 15 December 1997
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9824 Beck et al.: Vibrational states of HCP
studied, the unstable regions in phase space are essen
related to the unstable@r1B# family. We will show in the
next section that the POs are extremely useful for und
standing the quantum mechanical wave functions and t
development with energy.

IV. VIBRATIONAL LEVELS AND EIGENFUNCTIONS

A. Variational calculations

We have performed quantum mechanical variational c
culations for determining the vibrational energies as well
the corresponding wave functions. The total angular mom
tum isJ50 in all cases. The Hamiltonian is represented i
highly contracted/truncated 3D basis as described in deta
Ref. 48. The variational program requires basically two
rameters. The energyEcut up to which all internally con-
tracted basis functions are included and the maximal dista
in the dissociation coordinate,Rmax. All other parameters are
chosen automatically. In the present calculations we u
Ecut520.2 eV andRmax57.5 a0 resulting in about 9000 ba
sis functions. The estimated error due to limitations of
basis size is less than 1 meV for levels up to 3 eV above
bottom of the well, the energy region most interesting for
present study. Since our PES does not have spectrosc
accuracy, slight errors in the vibrational energies are not c
sidered to be crucial. It is well known that wave functio
converge more slowly than energy levels. Nevertheless,
are confident that the main results of this work are not
fected by convergence problems as calculations with fe
basis functions have demonstrated.49,50

We have visually examined, by both 2D projections a
3D representations, the lowest 700 wave functions in an
tempt to assign the vibrational levels. As we will demo
strate, the spectrum is straightforwardly assignable up to
energy of roughly23 eV, i.e., 2.25 eV above the minimum
Around this energy regime some of the wave functions be
to behave drastically differently, which gradually comp
cates an unique assignment. Interestingly, this is the s
energy regime, in which the saddle-node POs,@SN1#, sud-
denly come into existence. In the following subsections
will describe the assignment of the levels and the relati
ship between the localization of the quantum wave functi
on one hand and the periodic orbits on the other. The ef
of the different behaviors of the wave functions on the ro
tional constants will be elucidated in the next section.

In the subsequent discussion we will use the followi
notation:n1 , n2 , andn3 are the H–CP stretch mode asso
ated with R, the bending mode, and the CP stretch mo
related to motion inr , respectively. As mentioned in Sec. II
the periods associated with the@r1A#- and the@B#-type POs
are very close, and therefore both types of orbits show
strong mixing of CP-stretching and bending motion. T
same resonance effect obviously governs the quantum
chanical dynamics with the consequence that the wave fu
tions are arranged in the (r ,g)-plane rather than along th
angular axis or the CP stretching mode. Therefore, the
signment in terms of bending and CP stretching state
quite arbitrary~see below!. As will become apparent later on
J. Chem. Phys., Vol. 107, N
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the wave functions of the two progressions (0,v2,0) and
(0,0,v3) qualitatively behave in a similar way as far as t
symmetry with respect to linearity is concerned. For this r
son we prefer an assignment which treats both modes co
spondingly and therefore we identify in both cases the qu
tum numbersv2 andv3 with the number of nodes along th
‘‘backbone’’ of the respective wave functions in the interv
@0<g<p#. This facilitates, as we think, the subsequent d
cussion. Thus, in order to compare with the usual nomen
ture for a linear molecule~including the notation used by u
in paper I! the quantum numberv2 has to be multiplied by 2.

B. Polyad structure

The energy spectrum of HCP is governed by a p
nounced anharmonic resonance between the bending an
CP stretching modes leading to a distinct polyad structure
the energy level spectrum. This resonance and the co
sponding mode mixing is intriguingly illustrated by continu
ously changing one parameter in the Hamiltonian, for e
ample the mass of the hydrogen atom.6,51 In Fig. 4~a! we plot
the excitation energies@measured with respect to the~0,0,0!
ground vibrational state# for the two lowest excited states a
a function ofmX

21/2 from mX'0.7 to'1.6 ~mX is measured
in terms of the mass of the hydrogen atom!. The CP stretch-
ing frequency is, in a diabatic sense, almost independen
the mass of the attached atom X, whereas the bending
quency varies approximately linearly withmX

21/2. However,

FIG. 4. ~a! Variation of the excitation energies of the first two excited sta
of XCP with mX

21/2 . The mass is measured in terms of the hydrogen ma
i.e., mH51. ~b! Variation of the expectation value of the kinetic energ
operator associated with the CP stretching coordinater with mX

21/2 .
o. 23, 15 December 1997
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9825Beck et al.: Vibrational states of HCP
according to Wigner’s noncrossing rule, the two ener
curves are not allowed to cross and therefore are force
avoid each other. The resulting avoided crossing occurs~ac-
cidentally! aroundmX'1.1, i.e., just in the region of HCP
At small values ofmX the CP stretching~bending! state is
the lower ~upper! one and the wave function is clear
aligned along ther -(g-) axis~see Fig. 5 and Ref. 52!. As the
mass of the atom X increases these two local-mode w
functions mix which results in a rotation in the (r ,g)-plane.
At larger values ofmX the wave functions are again aligne
along either the one or the other axis and the assignme
terms of local modes is again straightforward.

The effect of mixing is also illustrated by the variation
the expectation valueŝTx& for the kinetic energies in coor
dinatesx5r or g. The lower part of Fig. 4 depictsTr as a
function ofmX

21/2 for the two states considered. The locati
of the avoided crossing atmX'1.1 is well predicted by this
quantity. In view of this figure it appears that for HCP th
upper state has more character of bending motion and th
fore should be assigned as~0,1,0!, while the lower state has
more character of motion alongr and thus must be assigne
as ~0,0,1!. This nomenclature is in accordance with the e
perimental assignment.36 Incidentally we note that for HCP
there is no state with nodes aligned purely along ther axis,
which is in accord with the bifurcation into@r #- and
@r1A#-type POs occurring very early, below the vibration
ground state.

The two adiabatic wave functions can be approximat
represented by linear combinations of zero-order or loc
mode type wave functions according to

C1~r ,g!5cosh fk51
~r ! ~r !f l 50

~r ! ~g!2sinh fk50
~r ! ~r !f l 52

~g! ~g!,

~5!

C2~r ,g!5sinh fk51
~r ! ~r !f l 50

~g! ~g!1cosh fk50
~r ! ~r !f l 52

~g! ~g!,

where h is the mixing angle andfk
(r )(r ) and f l

(g)(g) are
one-dimensional oscillator wave functions inr andg with k
and l quanta, respectively. The wave functions for HCP
well represented byh'p/4.

Because of the resonance in the bending and the
stretching frequencies, the energy spectrum of HCP con
of well defined polyads (v1 ,P2n,n) with polyad quantum

FIG. 5. Wave functions of the first excited~lower panel! and the second
excited~upper panel! state for selected values ofmX . The horizontal axis
ranges fromg50 to 40° and the vertical axis ranges fromr 52.5 a0 to 3.5
a0 . For more details see Ref. 52.
J. Chem. Phys., Vol. 107, N
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numberP5v21v3 . Figure 6 shows a portion of the spe
trum in the energy region ofP58 – 10. Each polyad, for a
fixed value ofv1 , consists ofP11 levels. The highest one
(v1 ,P,0), is the pure overtone of the bending mode, wh
the lowest member (v1,0,P) is the overtone of the CP
stretching mode associated withr . In order to illustrate the
development of the nodal pattern in the low-energy regi
we show in Fig. 7 wave functions in polyadsP51 – 3. The
relationship of the (0,P,0) and the (0,0,P) wave functions is
clearly seen. The potential plot also includes the POs of
@B#- and the@r1A#-type for the energies of the states~0,3,0!
and ~0,0,3!, respectively. As expected, they follow close
the ‘‘backbone’’ of the corresponding wave functions.19 In
full accordance with the classical calculations, both the be
ing wave functions as well as the CP stretch wave functi
are well confined to small angles and this does not cha
when the energy increases. They do not follow the minim
energy path in the (R,g)-plane but are more and mor
pushed aside, to larger respectively smaller values ofr . The
first wave functions that extend well beyond 40° correspo
to the@SN#-type periodic orbits found in the classical anal
sis. How these states emerge as a function of energy and
they fit into the polyad structure described above is the to
of the next subsection.

Vibrational resonances and polyads are well known t
ics in molecular spectroscopy~see Refs. 53 and 54, and re
erences therein!. We described the polyad structure for HC

FIG. 6. Section of the energy spectrum in the region of polyadsP
58 – 10. The assignment has been made in terms of the nodal structu
the wave functions. All states can be unambiguously assigned.
o. 23, 15 December 1997

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



e

l
th
w
.

e

t

nt
e

f

s
ve
we

e

of
ave

ther

the

e

fit
ly
the
r

y
the

and
t
er,

ent.
he

Th

ow
pe

of

9826 Beck et al.: Vibrational states of HCP
in some detail in order to highlight the structural chang
that occur at higher energies.

C. The genesis of saddle-node states

All states up to P512 can be—without any rea
problems—uniquely assigned. In order to illustrate how
wave functions change, within a given polyad, from the lo
est to the highest level, we show in the upper panel of Fig
selected wave functions forP510. The transition from
~0,10,0!, the highest state in this polyad, to~0,0,10!, the low-
est level, is very ‘‘smooth.’’ Coming from the top of th
polyad, the number of nodes in the@r1A#-type mode gradu-
ally increases at the expense of the number of nodes in
@B#-type mode. Between states~0,6,4! and~0,4,6! the overall
character of the wave function changes from predomina
@B# type to @r1A# type. As we have shown in paper I, th
backbone of the wave functions closely follow the@B# and
the @r1A# POs~see also Fig. 7!. The assignment in terms o
two quantum numbersv2 and v3 is straightforward;v1 is
zero for all these examples. PolyadP511 behaves in an
almost identical manner.

All the wave functions forP512, shown in the lower
panel of Fig. 8, are still more or less straightforwardly a
signable in terms of nodes along their backbone. Howe
careful inspection reveals that the nodal pattern of the lo
members, e.g.,~0,1,11!–~0,4,8!, are slightly distorted in
comparison to the correspondingP510 wave functions.
While all wave functions forP510 are directed either ‘‘up’’
~towards larger values ofr ! or ‘‘down’’ ~towards smaller

FIG. 7. Wave functions in the low-energy range of the HCP spectrum.
horizontal axis ranges fromg50 to 80° and the vertical axis ranges from
r 52.32a0 to 4.00a0 . For more details see Ref. 52. In order to indicate h
the wave functions are arranged in the potential well the panel in the up
left corner shows a (r ,g) cut of the PES forR54.157a0 . Also shown are
POs of the@B#- and the@r1A#-type; the energies of the orbits are those
states~0,3,0! and ~0,0,3!, respectively.
J. Chem. Phys., Vol. 107, N
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values of r !, thereby avoiding the isomerization path, th
wave functions at the bottom of polyadP512 show some
tendency for pointing to larger angles, i.e., in the direction
the CP–H channel. States with a new type of bending w
functions are about to emerge! The lowest member,~0,0,12!,
however, has again the expected clear structure as all o
(0,0,P) wave functions forP51 – 11.

Something really new begins withP513. This can be
seen both in the energy-level structure, Fig. 9, and in
wave functions, Fig. 10. While forP<12 all polyads are
complete, i.e., there areP11 levels, withP513 they begin
to become ‘‘incomplete.’’ What do we mean by that? At th
lower end of this polyad, where the lowest state forP513,
~0,0,13!, is expected, there is no state which would readily
into the (0,P513) scheme. There is a level with a slight
lower energy. However, its wave function does not have
general shape of (0,0,P)-type wave functions observed fo
P<12 ~see Figs. 7 and 8!. While the (0,0,P<12) wave func-
tions show curvature in the (r ,g)-plane, this wave function
runs almost parallel to ther axis, but at the same time clearl
extends to larger angles. It is very much reminiscent of
@SN#-type POs discussed above~see Fig. 14 and paper I!.
This wave function has 13 nodes along its backbone
therefore we include it to theP513 polyad, despite the fac
that its energy does not fit to the polyad structure. Howev
one should keep in mind that this state is somewhat differ
In order to distinguish it and other examples from t
‘‘pure’’ ( v1 ,v2 ,v3) states we will use the index SN.55 The

e

r-

FIG. 8. Selected wave functions in polyadsP510 ~upper panel! and P
512 ~lower panel!. For more details, see Fig. 7.
o. 23, 15 December 1997
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9827Beck et al.: Vibrational states of HCP
first clear-cut SN-type state occurs at an energy just slig
higher than the first@SN#-type PO~Fig. 2!.

The trend observed forP513 continues to higher poly
ads and actually becomes even more pronounced. For
ample, forP514 already two states are missing at the low
end of this polyad,~0,1,13! and~0,0,14!. There are two pairs
of levels at significantly lower energies, which cannot
clearly assigned~Nos. 246 and 248, respectively, 254 a
255!. One level of the lower pair is certainly (0,0,14)SN, and
one level of the upper pair is state (0,1,13)SN. However, due
to substantial mixing with states of theP511 polyad with
v151 the corresponding wave functions have a very biza
nodal structure.

For P515 three levels are missing at the lower end
the polyad. At the same time two states of the (1,P512)
polyad are absent. Altogether, there are now five state
this energy regime, which do not readily fall into the poly
structure as it is found at lower energies. The wave functio
three of which are plotted in the lower panel of Fig. 10,
have a clear @SN#-type behavior and are assigned
(0,0,15)SN, (0,1,14)SN, and (0,2,13)SN. The remaining two
states are assigned to (1,0,12)SN and (1,1,11)SN. This kind
of evolution continues at higher energies, that is, more
more states at the lower end of a polyad turn into@SN#-type
states. However, because the density of states and ther

FIG. 9. Section of the energy spectrum in the region of polyadsP
513– 15. The assignment has been made in terms of the nodal structu
the wave functions. Levels, which do not readily belong to the clear pol
structure observed at lower energies, are given in the right-hand colu
They are mostly of the@SN# type and therefore labeled by (v1 ,v2 ,v3)SN .
The dotted lines do not represent calculated energy levels, but indicate
ing levels.
J. Chem. Phys., Vol. 107, N

Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
ly

x-
r

e

f

in

s,
l

d

ore

the mixing between states gradually increases, the ass
ment becomes more and more tedious and fewer and fe
states can be uniquely assigned.

Close inspection of the wave functions has revealed
starting with polyadP513 the lower states of a polya
gradually change their character from@r1A#- to @SN#-type.
The onset of this new type of behavior is reflected also
the energy dependence of the various progressions. Figur
depicts the energy levels for the two progressions (0,P,0)

of
d
n.

ss-

FIG. 10. Selected wave functions in polyadsP513 ~upper panel! and P
515 ~lower panel!. For more details see Fig. 7.

FIG. 11. Energies of levels (0,P,0) and (0,0,P) vs polyad quantum numbe
P. Starting with P513 the energies of the@SN# states are shown. The
dashed curve is an extrapolation of the data points withP<12.
o. 23, 15 December 1997
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9828 Beck et al.: Vibrational states of HCP
and (0,0,P); according to the discussion above, the (0,0P
.12) states are really (0,0,P)SN states. The (0,P,0) progres-
sion shows a rather small anharmonicity up to very h
levels. This is in line with the observation that the period
the corresponding@B# PO does not change much with e
ergy. The other progression, (0,0,P), is slightly more anhar-
monic with the result that the gap between the two ladd
slowly increases. It exists only up toP512, where the
(0,0,P)SN progression abruptly sets in. The latter is high
anharmonic, which explains why the corresponding levels
not fit well into the general polyad structure but appear
significantly lower energies than expected. The@SN#-type
wave functions have a completely different structure than
@r1A#-type wave functions and extend more towards
isomerization path. Since the potential becomes gradu
flatter along the minimum energy path, it is not surprising
observe a significant reduction in the energy spacing
therefore an increase of the anharmonicity~see Fig. 2!.

The dashed line in Fig. 11 is an extrapolation of t
@r1A# progression derived from a fit to the energies up
level ~0,0,12!. It appears that the structural change of t
wave functions begins just where the (0,0,P) and the
(0,0,P)SN curves ‘‘bifurcate.’’ Expressed differently, while
climbing up the ladder, the quantum mechanical wave fu
tions follow the@SN#-type path rather than the@r1A# route
at the bifurcation.

The structural change of the states is also encoded in
energy spacing between adjacent levels,DEP(n)5E(0,P2n,n)

2E(0,P2n21,n11) , within a particular polyad. For the lowe
polyadsDEP(n) monotonically increases from the lowest
the highest level as can be seen in Fig. 12, i.e., the spacin
smallest at the bottom of a polyad and largest at the top. T
monotonic behavior holds true up toP59 and 10. Starting
with P511, DEP(n) becomes nonmonotonic having a min
mum atn59. This minimum shifts ton511 for P513 and
then stays at 11. The two different branches for the hig
polyads indicate the change from the@r1A#- to the@B#-type
behavior at the lower end of a polyad. Whether this mi
mum in the energy spacing has the same origin as the
predicted in the effective Hamiltonian analysis of Kellm
and co-workers,53 has to be investigated in the future.

Up to now we exclusively analyzed levels without exc
tation in the third coordinate,R. The general behavior dis
cussed for thev150 states does not qualitatively chan
whenv1Þ0. Around the same energy, where the (0,v2 ,v3)
states show a transition from the@r1A#-type wave functions
to the @SN# wave functions, the wave functions for stat
with excitation in R show a similar change. Examples fo
two polyads, (1,P512) and (2,P510), are depicted in Fig
13. However, in comparison with thev150 states the tran
sition occurs more gradually and not so abrupt. Thus,
though the polyad structure and the change of the struc
of the molecule is not strongly dependent onR, the motions
in r and g, on one hand, and inR, on the other, are no
completely decoupled. The distinctly different level spacin
within polyads for different quantum numbersv1 further
support this conjecture~see Figs. 6 and 9!.56

Despite the fact that substantial mixing of all thr
J. Chem. Phys., Vol. 107, N
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modes gradually prohibits the complete assignment of st
for higher and higher energies, it is possible to assign al
the @B#-type and most of the@SN#-type overtones. In Table
IV we list the energies and the energy differences,DE, be-
tween adjacent levels of the (0,v2,0) and the (0,0,v3)SN

states. Examples of higher-order SN-type wave functions
depicted in Fig. 14. It is clearly seen how the@SN#-type wave
functions penetrate deeper and deeper into the CP–H h
sphere of the PES as the energy increases. For compa
we show one@SN# PO in the upper two panels together wi
a contour plot of the potential. Because at these high ener
several families of@SN# orbits coexist, it is not clear which
type corresponds to a particular wave function. For
(0,v2,0) statesDE decreases in a very regular manner w
increasing quantum number, which indicates that this p
gression is very robust and is not significantly perturbed
coupling to other modes. In contrast,DE for the SN states
has a less gradual dependence. In view of the energy s
ings there seem to be at least two different families of S
type states; a third one might begin with the highest overt
considered, which we reluctantly assigned to ((0,0,26)SN

~unclear assignments are put in double brackets!. Since the
states (0,0,14)SN, (0,0,19)SN, and (0,0,25)SN are missing in
the table~because of substantial mixing with other states,
wave functions do not have a clear nodal structure!, the over-
all picture is somehow blurred. Although a direct correlati

FIG. 12. Energy spacing between adjacent levels within a particular pol
DEP(n), as function ofn>0. n50 marks the top of the polyad.~See text
for further details.!
o. 23, 15 December 1997
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9829Beck et al.: Vibrational states of HCP
of wave functions and POs of the different@SN#-type or en-
ergy spacings and classical periods is difficult, the rat
abrupt change of the energy spacing in the saddle-node s
indicates that the quantum mechanical states are indee
fluenced by the different@SN#-type classical orbits.

V. ROTATIONAL CONSTANTS

In a spectroscopic experiment one measures energy
ferences rather than wave functions. Information about
structure of a particular vibrational state can be extrac
only indirectly from intensities or, more precisely, from fin
structure constants such as, for example, rotational const
In the case of HCP, the two quite different bending motio
represented by the@B#- and the@r1A#-type wave functions,
on one hand, and wave functions with@SN# character, on the
other, result in substantially different rotational constants a
therefore rotational constants are helpful quantities for id
tifying different structures of vibrational states.30

In the present work we determined the rotational co
stants for each of the 700 vibrational levels by calculat
the expectation values of the inverse of the moments of
ertia with theJ50 eigenfunctions. The moments of inert
have been calculated by diagonalizing the inertia tensor
course, this procedure for calculating rotational constant
an approximation and effects due to modifications of
vibrational wave functions as a consequence of overall r
tion and Coriolis coupling are not taken into account. T
rotational constant for rotation around an axis in the H

FIG. 13. Wave functions for polyads (1,P512) and (2,P510). For further
details see Fig. 7.
J. Chem. Phys., Vol. 107, N
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plane and approximately perpendicular to the CP axis,Brot ,
is close to the spectroscopicB0 measured by Ishikawa
et al.24

In general, theBrot values for the states with wave func
tions of the@SN#-type are substantially larger than those f
the@B#- and@r1A#-type states. The differences can be qua
tatively explained in terms of the quite different amplitud
of bending motion for the three families of states. The m
contribution to the moment of inertia results from rotation
CP around the axis, while the contribution from the mu
lighter H atom is exceedingly smaller. However, in the ca
of the small-amplitude angular motion of the@B#/@r1A#
states, the hydrogen atom is always far away from the ro
tion axis with the result that its contribution is not negligibl
but of the order of at least a few percent of the contribut
of the CP rotation. On the other hand, in the case of
large-amplitude angular motion of the@SN# states the H atom
spends most of the time close to the rotation axis~g'90°! so
that its net contribution is indeed unimportant. Since the
tational constant is proportional to the inverse of the mom
of inertia, the@B#/@r1A# states have a rotational consta
which is a few percent smaller than for the@SN# states.

First, we consider the variation ofBrot inside a particular
polyad. In Fig. 15~a! we plotBrot for states (0,P2n,n) with
n50 ~the highest member of the polyad! throughn5P ~the
lowest member of the polyad!. For small values ofP, the
rotational constant monotonically decreases withn from the
top to the bottom of the polyad, with the exception of t
lowest level. This general behavior can be qualitatively e
plained by the more or less monotonic decrease of the
pectation valuê g& from state (0,P,0) to (0,0,P) ~see for

TABLE IV. Assigned overtone states of the@B# and the@SN# type.

@B#
state

E/cm21 DE/cm21 @SN#
State

E/cm21 DE/cm21

~0,0,0! 0
~0,1,0! 1 283 1283
~0,2,0! 2 568 1285
~0,3,0! 3 850 1282
~0,4,0! 5 124 1274
~0,5,0! 6 388 1264
~0,6,0! 7 639 1251
~0,7,0! 8 877 1238
~0,8,0! 10 101 1224
~0,9,0! 11 311 1210
~0,10,0! 12 509 1198
~0,11,0! 13 697 1188
~0,12,0! 14 875 1178 ~0,13,0! 15 211
~0,13,0! 16 045 1170 ~0,15,0! 16 931 1720a

~0,14,0! 17 208 1163 ~0,16,0! 17 713 782
~0,15,0! 18 366 1158 ~0,17,0! 18 482 769
~0,16,0! 19 519 1153 ~0,18,0! 19 221 739
~0,17,0! 20 668 1149 ~0,20,0! 20 493 1272
~0,18,0! 21 813 1145 ~0,21,0! 20 862 369
~0,19,0! 22 955 1142 ~0,22,0! 21 228 366
~0,20,0! 24 097 1142 ~0,23,0! 21 548 320
~0,21,0! 25 235 1138 ~0,24,0! 21 825 277

~~0,26,0!! 22 721 896

aThe italic numbers do not correspond to nearest neighbors spacings.
o. 23, 15 December 1997
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9830 Beck et al.: Vibrational states of HCP
example polyadP53 in Fig. 7!. The smaller̂g& the larger is
the distance of H from the rotation axis and, as a con
quence, the smaller is the rotational constant. With incre
ing polyad quantum number the behavior changes slightl
thatBrot first stays approximately constant before it decrea
near the lower end of the polyad.

The overall picture changes quite substantially withP
512 where the perturbations of the wave functions in

FIG. 14. Examples of wave functions for higher overtones of@SN#-type
states. The horizontal axis ranges fromg50 to 140° and the vertical axe
range fromr 52.32a0 to r 54.00a0 and fromR51.58a0 to R56.00a0 ,
respectively. The appropriate cuts through the PES are depicted in the u
panels together with a periodic orbit of@SN# type for E522.25 eV. For
more details see Ref. 52.
J. Chem. Phys., Vol. 107, N
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low-energy portion of the polyad become more distinct. T
rotational constants for states~0,2,10! and~0,1,11! are much
larger than they are expected to be. The corresponding w
functions shown in Fig. 8 have some clear admixture of
character, which explains this increase ofBrot . State~0,0,12!
is again a ‘‘normal’’@r1A# state and its rotational constant
again much smaller than for the next two higher levels. T
first real@SN#-type state occurs in theP513 polyad and for
reasons discussed above the corresponding rotational
stant is significantly larger than the constants for all low
states. Figure 15~b! shows, for P510, similar results for
states with excitation in then1 mode. With increasing exci-
tation in the H–CP stretching mode the transition from@B#-
or @r1A#-type behavior to@SN#-type behavior occurs a
higher and higher members in the polyad~smaller values of
n! and the rotational constants clearly show this. In conc
sion, the rotational constant reflects in a remarkable man
the structure of the vibrational states, especially the exten
the angular motion.

In Fig. 16~a! we plot the rotational constants for the 70
lowest states as a function of energy. One can clearly dis
guish two regimes: States whoseBrot constants are below th
rotational constants belonging to the (0,P,0) progression and
states above this borderline. The (0,P,0) states can be
uniquely identified up to very high energies and their ro
tional constants vary exceedingly smoothly withP @Fig.
16~b!#. In accord with experiment24 they first rise with en-

per

FIG. 15. ~a! Rotational constantsBrot for states (0,P2n,n) as function ofn
for several polyads.n50 marks the top of the polyads.~b! The same as in
~a! but for states~v1<2, P2n,n! with P510.
o. 23, 15 December 1997
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9831Beck et al.: Vibrational states of HCP
ergy and then monotonically decrease withP. The Brot val-
ues for progression (0,0,P) monotonically decrease withP
up to P512. In accord with our calculations, the measur
value for~0,0,1! is slightly lower than the rotational consta
for the vibrational ground state~Table VIII in Ref. 36!. As
discussed in Sec. IV the (0,0,P) progression only extends t
P512. State~0,0,13! is of the@SN# type and because of th
essentially different angular shape, this state has a m
larger rotational constant. States~0,0,14! and ~0,0,19! are
strongly perturbed and therefore not included in the prog
sion. The many states between the (0,P,0) progression on
one hand and the (0,0,P)SN progression on the other hav
more or less pronounced@SN# character and therefore rota
tional constants which are larger than those for the p
@B#-type states.

Except for the lower states of the (0,P,0) progression,
the rotational constants for states (0,P,0) and (0,0,P) de-
crease with energy. This behavior can be explained by
continuous increase of the expectation value of the
stretching coordinate,̂r &, with the degree of excitation. O
the other hand,̂r & remains approximately constant withP
for the @SN# states and so does the correspondingB value.

VI. DISCUSSION

Demonstrating how the vibrational energy spectrum
HCP, a relatively simple triatomic molecule, changes w

FIG. 16. ~a! Rotational constantsBrot for the lowest 700 states as function o
energy. The constants for the three overtone progressions (0,P,0), (0,0,P),
and (0,0,P)SN are indicated by solid dots and drawn separately in~b!.
J. Chem. Phys., Vol. 107, N
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energy and how new types of motions appear when climb
up the ladder were the main purposes of the foregoing s
tions. Classical mechanics, especially the concept of perio
orbits and their continuation/bifurcation diagram, have be
proven to be exceedingly helpful in understanding the dev
opment of the quantum mechanical states. Nevertheles
one wants to obtain a clearest picture, it is absolutely nec
sary to visually inspect all wave functions, even though t
is a tremendous task. Automatic assignments in terms of,
example, projections of wave functions on zero-order wa
functions, works at low energies, but is bound to fail wh
mixing of ~zero-order! states becomes too strong.

The most surprising finding was the gradual change
the polyad structure at the bottom of the polyad, when
states (0,0,P) with wave functions quite restricted in the H
C–P bending angle turn into (0,0,P)SN states, whose wave
functions have a completely different bending behavior. A
though this transition sets in rather abruptly in a narrow
ergy regime, early signs of these structural changes are
ready found at lower energies. The onset of this chang
accurately predicted by classical mechanics in form of
birth of saddle-node periodic orbits. In contrast to classi
mechanics where the@SN#-type POs come into existence at
precise energy, in quantum mechanics the structural cha
is, as expected, somehow smeared out. It should be n
that the@r1A#-type wave functions do not completely cea
to exist. At higher energies one can find wave functions t
have, if the contours plotted are chosen in a special way,
character of (0,0,P) wave functions. However, the example
found by us were strongly mixed with other states in t
energetic proximity. In other words, quantum mechanics s
‘‘feels’’ the existence of the underlying@r1A# POs.

There are several interesting questions to be asked
classical mechanics can provide possible answers to th
First, why does the change begin at the bottom of the po
ads and not at the top, i.e., why do the (0,0,P) states turn
into the saddle-node wave functions rather than the (0,P,0)
levels? We think the answer to this question has to do w
the different stabilities of the@B#- and@r1A#-type POs. The
@B# periodic orbits and likewise the corresponding wa
functions are comparably robust and exist up to very h
energies; in addition the anharmonicity is quite small in t
mode. One reason for this pronounced stability might be
existence of the potential trough seen at small angles
larger CP bond distances~Fig. 1!, which—loosely
speaking—‘‘guides’’ the@B# orbits. The sibling POs of the
@r1A#-type avoid this region of the PES and intuitively a
expected to be less stable. Actually, they eventually ceas
exist at around22 eV, an energy where the@B# orbits are
still intact. Moreover, the classical bifurcation analys
showed that there is a second branch of trajectories,@r1B#,
which are unstable and therefore create regions of instab
in their neighborhood. Thus, it appears that first the quan
mechanical states, which follow the less stable POs, cha
their character.

Second, why do the SN POs and the correspond
quantum states come into existence so suddenly with
ergy? According to general results of non-linear dynam
o. 23, 15 December 1997
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9832 Beck et al.: Vibrational states of HCP
theories, saddle-node bifurcations occur as a consequen
tangencies of the stable and unstable manifolds of unst
periodic orbits. As predicted by the Newhouse theorem57

when these invariant objects~the manifolds! touch each
other, new periodic orbits emerge. By way of this mech
nism classical trajectories find ways to penetrate into regi
of phase space, which were not sampled by periodic orbit
lower energy. Characteristic examples are the saddle-n
bifurcations which appear above potential barriers. The
stable POs that originate at the top of the barrier give rise
periodic orbits which can visit the minima on both sides
the barrier.19,22,58 The remarkable observation is that the
saddle-node POs create stability in otherwise highly unsta
regions of phase space. Studies like the present one de
strate how quantum mechanics can ‘‘recognize’’ these
gions and accommodates the eigenfunctions accordingly

Saddle-node bifurcations may also appear inside po
tial wells when the curvature of the potential chang
abruptly.59,60 This is the case for HCP. As we can see fro
Fig. 2 the saddle-node bifurcations emerge when the m
mum energy path signals changes in the slope of the PE
is really astonishing that the quantum mechanical state
the SN type appear at about the same energies and s
distinct progressions with different energy spacings. This
derlines the strong influence the different@SN#-type POs
have on the quantum mechanical world.

The third question concerns the relative importance
kinetic energy coupling and coupling of the modes due to
potential. In the initial phase of our study we believed tha
is the pronounced potential trough mentioned above that
plains the bowed shape of the@B#-type POs and the corre
sponding wave functions. However, if that were true, h
can we explain—in terms of the shape of the PES—the p
ticular form of the@r1A# POs and wave functions? In doin
the mass variation study discussed in Sec. IV we found
that the interplay between the kinetic energy term and
potential is important. In Fig. 17 we show wave functions
HCP in polyadP510 in comparison to the correspondin
wave functions for DCP. Although there is some mixing b
tween r and g, the wave functions for DCP have a muc
stronger local-mode character, i.e., they are much be
aligned along ther and theg axis. The (0,P,0) bending
states extend along the isomerization path and this beha

FIG. 17. Comparison of selected HCP and DCP wave functions in po
P510. For more details see Fig. 7.
J. Chem. Phys., Vol. 107, N
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is not just found at high energies but even for the low
excited states. A detailed discussion of DCP will be pu
lished at a later date.

The accuracy of our PES is not sufficient to compa
directly the calculated transition energies and rotational c
stants with the experimental results. For example, the
crepancy for the fundamental of the (0,P,0) progression is
53 cm21, which accumulates up to about 300 cm21 for the
14th overtone. BeyondP515 the deviation becomes smalle
again. This large mismatch and the relatively large density
states makes it impossible to uniquely relate the measu
transitions to the vibrational levels calculated. Therefore,
are unable to identify the calculated levels that correspon
the levels for which unusually large rotational constants h
been measured. At present time the comparison can onl
made qualitatively.

It is plausible to speculate that the onset of the pertur
tions detected in the (0,v2,0) progression24 with v2>16 ~in
our notation! is caused by the structural changes of the qu
tal wave functions found in the present study. Betweenv2

517 and 19 the measuredBrot value changes substantially b
about 8% and takes on values which are in very good ag
ment with the calculated rotational constants for the
states. Although this agreement might be coincidence,
have the impression that the sudden increase signals s
structural changes of the kind described by us. In an atte
to assess the existence of the@SN#-type states, Ishikawa
et al.31 performed an additional SEP experiment and inde
found bands having the characteristics of the (0,0,P)SN

states; relatively large rotational constants, a large anhar
nicity, and an energetic origin in reasonable agreement w
our predictions.

What is needed is a better potential energy surface
order to directly compare with the experimental spectra.
present time theab initio calculations of Koput38 are ex-
tended to cover the full angular regime from H–CP
CP–H. Once this PES is available we should be in the p
tion to make a rigorous contact with experiment.

Recently there has been some interest in extracting
formation about periodic orbits and their bifurcations fro
quantum mechanical spectra alone, without actually sea
ing for POs.61,62 The tool is a windowed Fourier transforma
tion of the quantum mechanical spectrum~called
vibrogram61!, i.e.,

A~T,E!5E
2`

1`

S~e! f ~E2e!e2 i eTde, ~6!

where the spectrumS~e! is given by

S~e!5(
n

d~e2en!, ~7!

and the sliding windowf (e) is a Gaussian. The results
which we obtained when taking the calculated vibration
energies without any weighting, were not satisfactory. Es
cially the sudden occurrence of the saddle-node POs c
not be seen. A clearer picture emerged, however, w
absorption-type spectra, calculated with localized initial-st

d

o. 23, 15 December 1997
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9833Beck et al.: Vibrational states of HCP
wave functions, were Fourier transformed. Thus, in orde
see, for example, the@B# POs we put Gaussian wave fun
tions on the corresponding orbits, calculated the overlap w
all vibrational states and used this spectrum in Eq.~6!. The
same was done with wave packets localized on the@SN#
periodic orbits. Various vibrograms were compiled into
total vibrogram with the interference between different wa
packets taken into account. An example is shown in Fig.
One clearly sees the bifurcation around23 eV. For compari-
son, we also depict the half-periods of the@B# and @SN1A#
periodic orbits and good overall agreement is observed.~Be-
cause in the classical calculations the angular coordina
allowed to vary between2180° and1180°, it is T/2 that
corresponds to 2p/DE, where DE is the energy spacing
between two levels.! Thus, information about the time
energy relationship of classical periodic orbits can be
tained from only the quantum mechanical calculations, p
vided the ‘‘spectra’’ are prepared in a particular mann
This requires, however, that some knowledge about the
is already available.

VII. CONCLUSIONS

Our classical and quantum mechanical calculations
the energy spectrum of HCP in the ground electronic st
using anab initio PES, have revealed the following clues

~1! The spectrum is governed by a 1:1~1:2, if conventional
spectroscopic nomenclature is used! resonance betwee
CP stretching andH–C–Pbending motion leading to a
substantial mixing of local-mode states. The spectru
which consists of clearly defined polyads, as well as
normal-mode wave functions are astonishingly regu
even at energies where anharmonic couplings due to
potential are prominent.

~2! All states below some critical energy are confined to
H–CP hemisphere, i.e., the~Jacobi! angle g remains
smaller than 40° or so, even if the energy is sufficien
high for following the isomerization path to CP–H.

~3! A new class of states, which follows the isomerizati
path all the way to the CP–H side with increasing e

FIG. 18. Vibrogram uA(T,E)u2 obtained from quantum mechanica
absorption-type spectra as described in the text. The solid lines are
energy-dependent half-periods of the@B#- and @SN1A#-type periodic clas-
sical orbits.
J. Chem. Phys., Vol. 107, N
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ergy, suddenly comes into existence at a relatively h
energy. At the same time the polyad structure gradua
disintegrates with the wave functions at the bottom
the polyad turning into the isomerization bending stat

~4! Classical periodic orbits quantitatively describe all t
findings observed in the quantum calculations. In p
ticular, they closely follow the backbone of the quan
wave functions and explain the sudden appearance o
isomerization-type bending states as the consequenc
a saddle-node bifurcation. They even predict the abr
change of energy spacing between neighboring sad
node overtones through the generation of new sad
node periodic orbits at higher energies.

~5! The two classes of bending states, those which are c
fined in the angular coordinate and those which follo
the isomerization path, have distinctly different momen
of inertia reflecting the small- and large-amplitude ben
ing motions. The resulting rotational constants for ro
tion about an axis perpendicular to the CP axis ag
well with the two regimes observed in recent SEP sp
troscopy experiments.

~6! Although a direct comparison with experimental data
because of the limited accuracy of the potential ene
surface used, not possible, our calculations qualitativ
explain several observations such as the abrupt onse
perturbations observed in the experimental SEP spec
the existence of states with two classes of rotational c
stants, as well as the reality of states with unusually la
anharmonicity.
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