
International Journal of Bifurcation and Chaos, Vol. 16, No. 7 (2006) 1913–1928
c© World Scientific Publishing Company

REACTION PATHS AND ELEMENTARY
BIFURCATIONS TRACKS: THE DIABATIC

1B2-STATE OF OZONE

S. C. FARANTOS
Institute of Electronic Structure and Laser,

Foundation for Research and Technology-Hellas, and
Department of Chemistry, University of Crete,

Iraklion 711 10, Crete, Greece

ZHENG-WANG QU, H. ZHU and R. SCHINKE
Max-Planck-Institut, Dynamik und Selbstorganisation,

D-37073 Göttingen, Germany

Received November 5, 2004; Revised March 15, 2005

Bifurcations of equilibrium points and periodic orbits are common in nonlinear dynamical sys-
tems when some parameters change. The vibrational motions of a molecule are nonlinear, and
the bifurcation phenomena are seen in spectroscopy and chemical reactions. Bifurcations may
lead to energy localization in specific bonds, and thus, they have important consequences for ele-
mentary chemical reactions, such as isomerization and dissociation/association. In this article we
investigate how elementary bifurcations, such as saddle-node and pitchfork bifurcations, appear
in small molecules and show their manifestations in the quantum mechanical frequencies and
in the topology of wave functions. We present the results of classical and quantum mechanical
calculations on a new (diabatic) potential energy surface of ozone for the 1B2 state. This excited
electronic state of ozone is pertinent for the absorption of the harmful UV radiation from the
sun. We demonstrate that regular localized overtone states, which extend from the bottom of
the well up to the dissociation or isomerization barrier, are associated with families of periodic
orbits emanated from elementary bifurcations.
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1. Introduction

Understanding the dynamics of molecules at ener-
gies where chemical bonds break or are formed
is not only of academic importance but basi-
cally it is the foundation of chemistry. In the
Born–Oppenheimer approximation for the separa-
tion of the electronic and nuclear motions in a
molecule, Quantum Chemistry answers in part this
problem by solving the electronic Schrödinger equa-
tion to produce molecular potential energy surfaces
(PES). The solution of the nuclear equations of
motion is required to understand the elementary

chemical processes, such as isomerization and dis-
sociation/ association. Since elementary chemical
reactions require the excitation of the molecule to
high energy vibrational-rotational states, spectro-
scopic methods which capture the molecule at these
extreme motions are applied, together with theo-
retical methods to assign the spectral lines and to
extract the dynamics.

In the second half of the twentieth century
several vibration-rotation molecular spectroscopic
methods were developed which allowed one to
record high resolution spectra of highly excited

1913



1914 S. C. Farantos et al.

states. Among them the Stimulated Emission
Pumping (SEP) and the Dispersed Fluorescence
(DF) spectroscopy [Dai & Field, 1995] gave an
impetus to the field of vibrationally excited
molecules in the ground electronic state. SEP is a
double-resonance technique. A first laser promotes
the molecule to a single rovibrational level of an
electronically excited state, while a second laser
stimulates the emission down to a highly excited
vibrational state of the ground electronic state.
Due to the improved Franck–Condon access for
transitions corresponding to a significant change of
molecular geometry, SEP gives access to a class
of vibrational states which are not accessible by
direct overtone spectroscopy. Molecules studied by
SEP and DF spectroscopy are C2H2 [Jacobson
et al., 1998a, 1998b, 1999], HCP [Ishikawa et al.,
1998], SO2 [Yamanouchi et al., 1990, 1988; Sako
& Yamanouchi, 1996], HFCO [Yamamoto & Kato,
1998], HCO [Keller et al., 1996], DCO [Keller et al.,
1997], HCN [Northrup et al., 1997] and NO2 [Delon
et al., 2000]. Since the SEP and DF methods excite
the molecule at very high vibrational states, they
are ideal spectroscopic techniques to deduce the
dynamics close to the isomerization or dissociation
threshold. As a matter of fact, the SEP spectra of
acetylene were the first which revealed vibrational
(quantum) chaos at energies above the isomeriza-
tion threshold of acetylene to vinylidene [Jonas
et al., 1993].

Other high resolution spectroscopic methods
which have contributed to the detailed study of
small polyatomic molecules are the High Reso-
lution Fourier Transform and Laser Spectroscopy
in several diversities: Frequency Modulation with
Diode Lasers (FMDL), Cavity Ringdown Spec-
troscopy (CRDS), Intracavity Laser Absorption
Spectroscopy (ICLAS), Optoacoustic (OA) and
Optothermal Spectroscopy, and Photofragment
Spectroscopy. Several molecules have been stud-
ied, such as H2O, HO2, CO2, HCN, HNO, N2O,
OCS, HOCl, HCO, CH4, C6H6, NH3, HOOH,
s-tetrazine, dimethyl-s-tetrazine pyridine, propyne
to mention a few. A short description of these meth-
ods are presented in [Herman et al., 1999]. Crim
and coworkers [1999] have combined the photo-
acoustic spectroscopy with a time of flight appa-
ratus to control the products in unimolecular and
bimolecular reactions by vibrationally exciting spe-
cific chemical bonds of reactant molecules. This
bond selective chemistry reveals energy localization
in specific bonds.

Laser femtosecond spectroscopy and molecu-
lar beams have allowed to study isolated molecules
and follow a chemical reaction in real time. This
requires the simultaneous development of theoret-
ical models to interpret the experimental results.
The established theoretical methods based on a
normal mode description of the molecular vibra-
tions, applied at energies close to the equilib-
rium point, are not valid for highly vibrationally
excited molecules. The deviation from the harmonic
approximation of the potential energy surface
imposes the need for the construction of accurate
potential functions that describe several and ener-
getically accessible reaction channels. These are
nonlinear functions and the application of non-
linear mechanics to investigate the dynamics of
the molecule is necessary. Polyatomic molecules
stimulate new computational challenges in solving
accurately the Schrödinger equation and obtaining
hundreds of vibrational states. Nowadays, triatomic
molecules can be treated with fully ab initio meth-
ods, both in their electronic and nuclear parts.
Tetratomic molecules are more difficult to deal with,
in spite of the progress which has recently been
achieved. For example, six-dimensional calculations
up to energies of the isomerization of acetylene to
vinylidene have been published [Zou & Bowman,
2002].

Apart from the computational challenges small
polyatomic molecules unravel conceptual and phys-
ical interpretation problems. A result of the
nonlinear mechanical behavior of a dynamical sys-
tem at high energies is the simultaneous appear-
ance of ordered motions and chaos, as well as the
genesis of new types of motions via bifurcation phe-
nomena. What are the quantum mechanical coun-
terparts of these classical behaviors? What are the
spectroscopic fingerprints of the nonlinear dynam-
ics in the molecules? In cases where the vibra-
tional spectra depict isomerization and dissociation
processes how can we identify them in the spec-
tra? As a matter of fact, the progress of nonlinear
mechanics forces us to re-examine the mechanisms
of the breaking and/or forming of a single chemical
bond as it occurs in elementary chemical reactions.
To answer the above questions new assignment
schemes which allow the classification of quantum
states in a meaningful and useful way are required
and such novel methods have been developed
thanks to the theory of periodic orbits (PO), their
bifurcations [Wiggins, 2003] and semiclassical the-
ory [Gutzwiller, 1990].
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The theory of periodic orbits plays a domi-
nate role in the formulation of classical mechanics.
However, what makes periodic orbits important for
molecules are the advances obtained in semiclassi-
cal theory in the past years. Gutzwiller [1990] using
Feynman’s path integral formulation has derived a
semiclassical expression for the trace of the resol-
vent (Green operator) of the quantum Hamilto-
nian operator as a sum over all isolated periodic
orbits, taking into account their linear stability
indices. This formula provides approximate values
for the quantum eigenenergies of classically chaotic
systems. Berry and Tabor [1977] derived in a differ-
ent way the trace formula based on the Einstein–
Brillouin–Keller quantization rule. Their formula
gives the quantum density of states as a coherent
summation over resonant tori, and therefore it is
applicable to integrable systems. Finally, a uniform
result bridging the Berry–Tabor and Gutzwiller
trace formulas for the case of a resonant island
chain was derived by Ozorio de Almeida [1990].
Last but not least, the importance of periodic orbits
for a qualitative understanding of the localization
of quantum mechanical eigenfunctions in config-
uration space came from the scarring theory of
Heller [1984]. It turns out, that for small polyatomic
molecules the probability density of eigenfunctions
is accumulated along short-period stable or the least
unstable periodic orbits. In some cases, such as over-
tone states, we can associate isolated PO with spe-
cific eigenfunctions.

Periodic orbits evolve with the energy of the
system or any other parameter in the Hamilto-
nian, bifurcate and produce new periodic orbits
which portrait the resonances among the vibra-
tional degrees of freedom. Generally, PO reveal
the structure of phase space at different energies,
i.e. the different types of motions. We can apply
these methods with two different strategies. In the
first one we follow the Global-approach, that is we
employ global potential energy surfaces valid over
the complete nuclear configuration space from the
minima to the dissociation/isomerization channels
and compute families of periodic orbits from the
minima of the potential up to and above the dis-
sociation threshold or up to the energy where they
are annihilated.

The second strategy, named the patch-
approach, is usually applied by spectroscopists.
An effective Hamiltonian is fitted to spectroscopic
results reproducing part of the vibrational energy
spectrum, and thus a patch of the global

Hamiltonian. The spectroscopic Hamiltonians,
which are mainly of reduced type (less degrees
of freedom) incorporate the resonance(s) among
the frequencies of two different degrees of freedom
observed in experimental spectra. These Hamilto-
nians can be extended to fit calculated spectra and
then a PO analysis is carried out in a similar fashion
as in the Global-approach.

We have systematically studied the PO con-
tinuation/bifurcation (C/B) diagrams for several
types of molecules; triatomic [Farantos, 1996]
and tetratomic [Prosmiti & Farantos, 1995, 2003]
molecules, van der Waals molecules [Guantes et al.,
1999] and at energies below and above dissociation
threshold [Founargiotakis et al., 1997]. Similarly to
the landscape of the PES which reveals the relative
stability/instability and reactivity of the molecular
isomers, the families of periodic orbits portray the
structure of phase space at specific energies, and
they thus reveal the dynamics of the molecule at
least around the periodic orbits. It is now accepted
that the regular motions and the chaotic motions in
phase space consist of highly complicated entangled
networks. Periodic orbits depicted by a C/B dia-
gram may be considered as providing a higher order
of approximation to the dynamics of the molecule,
after obtaining the zero order approximation with
the potential function.

The landscape of the PES may drastically
change as energy increases in the molecule. Barriers
and minima may disappear/appear. Similarly, the
phase space changes with the total energy. Stable,
quasiperiodic motions may turn to unstable chaotic
ones and vice versa. But most importantly, via the
bifurcations of periodic orbits new types of motion
may emanate. The bifurcation theory of Hamilto-
nian dynamical systems has mainly been developed
in the last half of twentieth century. One impor-
tant outcome of the theory is the identification of
the elementary bifurcations which are described by
very simple Hamiltonians. In spite of their sim-
plicity they can also describe a complex dynam-
ical system close to particular critical energies.
This makes elementary bifurcations generic. For
molecular Hamiltonian systems we have identified
the saddle-node, pitchfork and Hopf-like elementary
bifurcations.

Bifurcation phenomena, i.e. the change of
the structure of the orbits by varying one or
more parameters, are well known in vibrational
spectroscopy. For example, the transition from nor-
mal to local mode oscillations, first discovered
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in symmetric ABA molecules, is related to the
elementary pitchfork bifurcation [Halonen, 1998;
Lawton & Child, 1981; Prosmiti et al., 1999]. In
what follows we show that localization of energy
is also obtained via another generic bifurcation
of periodic orbits, the saddle-node (SN). Periodic
orbits which emerge from SN bifurcations appear
abruptly at some critical value of the energy, usu-
ally in pairs, and change drastically the phase space
around them. They penetrate in regions of nuclear
phase space which the normal mode motions cannot
penetrate. Saddle-node bifurcations are of generic
type, i.e. they are robust and remain for small
(perturbative) changes of the potential function
[Prosmiti & Farantos, 1995, 2003].

We initially determined the importance of SN
bifurcations of periodic orbits in studies of the iso-
merization dynamics in double well potential func-
tions [Farantos, 1993]. These PO connect the two
minima and scar the isomerizing wave functions,
i.e. eigenfunctions with significant probability den-
sity in both wells. Their birth is due to the unsta-
ble periodic orbit which emanates from the saddle
point of the potential energy surface. However, even
below the potential barrier a series of SN bifurca-
tions of periodic orbits pave the way to the iso-
merization process. The spectroscopic signature of
such SN bifurcations has been found in a num-
ber of triatomic molecules [Ishikawa et al., 1999;
Joyeux et al., 2002]. HCP was the first molecule
where experimental evidence for SN bifurcations
was given. In the other extreme, infinite dimensional
systems, such as periodic or random lattices, show
spatially localized and periodic in time motions,
called discrete breathers (DB), and it has been
shown that they can also be associated with saddle-
node bifurcations [Flach & Willis, 1998; Kopidakis
& Aubry, 1999]. Spectroscopic evidence for the exis-
tence of discrete breathers can be found among
biomolecules [Xie et al., 2000].

In the present article we apply PO analysis to
an electronically excited state of ozone. In Sec. 2 we
introduce the concepts of elementary bifurcations
and show how saddle-node bifurcations emerge via
simple one-dimensional Hamiltonians, which how-
ever, depict the dynamics on the complicated molec-
ular potential energy surfaces. In Sec. 3 we present
our strategy to locate periodic orbits in multidi-
mensional Hamiltonians and for general coordinate
systems. Section 4 describes the results on the
excited 1B2 electronic state of ozone. We conclude
with Sec. 5.

2. Elementary Bifurcations

We call elementary those bifurcations which can
appear in the simplest one- or two-dimensional
nonlinear systems by varying one or two parame-
ters. Comparing these systems with the complicated
multidimensional molecular Hamiltonians, we may
think that a simple one-dimensional Hamiltonian is
only of pedagogical use. This is not true, since we
can show that at the critical value of the parame-
ter at which the bifurcation occurs, the system can
be reduced to one of lower dimension by using the
central manifold theorem [Wiggins, 2003], and then
we can describe it with a simple Hamiltonian by
transforming to normal forms. The mathematical
theory of bifurcations in dynamical systems is well
developed and there are excellent books [Gucken-
heimer & Holmes, 1983; Wiggins, 2003] and review
articles [Crawford, 1991] to introduce the subject.
In this section we discuss how a saddle-node bifur-
cation appears in the simplest nonlinear Hamiltoni-
ans, that with a cubic and quartic potential.

2.1. Cubic potentials

For a system of one degree of freedom with a
Hamiltonian

H(q, p) =
1
2
p2 + V (q) (1)

the Hamilton’s equations of motion for a conserva-
tive vector field are

q̇ =
∂H

∂p
(2)

ṗ = −∂H

∂q
. (3)

q is the generalized coordinate, p its conjugate
momentum and V (q) the potential function. The
stationary points of the potential, i.e. dV (q)/dq = 0,
are the equilibrium (or fixed) points of the vector
field; q̇ = ṗ = 0. The above mentioned books [Guck-
enheimer & Holmes, 1983] describe the elementary
bifurcations of fixed points of vector fields. Here, we
do not attempt a complete cover of this subject but
we discuss mainly those cases which are related to
the saddle-node bifurcations.

We assume a general cubic potential

V (q) =
1
3
q3 − 1

2
αq2 − βq − γ (4)

The equilibrium points of Hamilton equations are
then the roots of the second order polynomial
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dV (q)
dq

= q2 − αq − β = 0. (5)

The discriminant of the above equation is defined as

D = α2 + 4β. (6)

In order that Eq. (5) has two real roots (equilib-
rium points) D ≥ 0 is required. Thus, the parabola
D = 0 defines the region in the two-parameter
space, (β, α), where these two roots exist. Figure 1
exhibits this region and Fig. 2 shows the evolution
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Fig. 1. The sign of the discriminant D [Eq. (6)] in the
parameter space (β, α) of a cubic potential.
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Fig. 2. C/B diagram of a cubic potential. The coordinates q
of the two equilibria are shown as function of the parameter
β and α = 0. Continuous line denotes the stable equilibrium
point (minimum) and the dashed line the unstable equilib-
rium point (maximum).

of the two equilibria of the potential by varying
the parameter β assuming α = 0. This graph is
a typical saddle-node continuation/bifurcation dia-
gram. We notice, that there are no equilibrium
points for negative values of β and at β = 0 the
double root signals the genesis of the saddle-node
bifurcation. The two branches correspond to stable
(solid line) and to unstable (dashed line) equilib-
rium points. Stable means that trajectories close
to this point will remain in the nearby region,
whereas unstable points mean that nearby trajecto-
ries will deviate from it. Visualization of the equi-
librium points of the corresponding potential func-
tion explains better the stable and unstable terms.
Such a plot is shown in Fig. 3 for several values
of β.

In this figure we can distinguish three differ-
ent regimes. For β < 0 there are no equilibrium
points, for β > 0 there are two equilibrium points,
one minimum and one maximum, and for β = 0
(dashed line) there is one saddle point at q = 0. In
Fig. 4 several trajectories are plotted in the phase
plane, (q, p), and for β = 1. The dashed line denotes
the separatrix of the two types of motions allowed
for this dynamical system; closed stable orbits and
unbound orbits. This phase space graph is typi-
cal of a saddle-node bifurcation. It is important to
emphasize that the structure of phase space does
not change qualitatively by introducing a second
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Fig. 3. Plots of a cubic potential for several values of β.
For β < 0 there are no equilibrium points, for β > 0 there
are two equilibrium points, one minimum and one maximum,
and for β = 0 (dashed line) there is one saddle point at
q = 0.
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Fig. 4. Trajectories which portray the phase space structure
in the region of a saddle-node bifurcation (β = 1).

parameter. The C/B diagram remains the same
with two branches for values of α �= 0.

2.2. Quartic potentials

A general quartic potential is

V (q) =
1
4
q4 − 1

3
αq3 − 1

2
βq2 − γq − δ (7)

The equilibrium points are:

dV (q)
dq

= q3 − αq2 − βq − γ = 0. (8)

This cubic equation can be reduced to a two param-
eter equation with the transformations

x = q − α

3
(9)

µ =
α3

3
+ β (10)

λ =
2α3

27
+

αβ

3
+ γ. (11)

The reduced cubic polynomial is

x3 − µx − λ = 0. (12)

The discriminant is defined by

D = −µ3

27
+

λ

4
. (13)

The roots of Eq. (12) are:

(i) For D > 0, one real root and two imaginary.
(ii) For D < 0, three different real roots.
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Fig. 5. The sign of the discriminant D [Eq. (13)] in the
parameter space (λ, µ) of a quartic potential.

(iii) For D = 0, three real roots two of them
being equal. Figure 5 presents the sign of the
discriminant in the parameter space (λ, µ).
The cusp curve defines the values of (λ, µ)
where the discriminant is zero. Thus, crossing
this curve from positive to negative values of D
we pass from one to three equilibrium points.
A double degeneracy of equilibrium points is
encountered at the cusp curve.

The C/B diagram for λ = 0 and varying the
parameter µ is shown in Fig. 6. This is a typ-
ical pitchfork bifurcation. The introduction of a
second parameter (λ �= 0) results in the C/B

−1 0 1 2
 µ

−2

−1

0

1

2

 λ = 0

Fig. 6. C/B diagram of a quartic potential and for λ = 0
(pitchfork bifurcation). Continuous lines denote stable equi-
libria and dashed line the unstable equilibrium point.
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diagram shown in Fig. 7. Comparing the two con-
tinuation/bifurcation diagrams for λ = 0 and λ �= 0
(Figs. 6 and 7), we can see that the unstable branch
in the pitchfork bifurcation (dashed line) becomes
the unstable branch of a saddle-node bifurcation,
whereas one stable branch in the pitchfork bifurca-
tion is the stable branch of the SN bifurcation. We
can also see that the parent family in the pitchfork
bifurcation turns to a hysteresis. We can think of
this continuation/bifurcation diagram as a folded
surface in the (λ, µ, x) space. The size of the gap in
the C/B curves with the parameter µ depends on
the value of the parameter λ. Increase of λ results
in an increase of the gap (see Fig. 8).

The three equilibria in the quartic potential
are two minima and one maximum. In Fig. 9 we
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Fig. 7. As in Fig. 6 but for λ = 0.01. A saddle-node and a
hysteresis bifurcation appear.
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Fig. 8. As in Fig. 6 but for λ = 0.1.
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Fig. 9. Potential curves of a quartic potential and for sev-
eral values of λ. The dashed line is the symmetric double well
potential (λ = 0).

Fig. 10. Phase space structure of a symmetric double well
quartic potential.

plot potential curves for several values of λ and for
µ = 1. As λ approaches zero the kink in the poten-
tial is transformed to a double well.

Trajectories plotted in the phase plane (x, p)
are shown in Fig. 10 for the symmetric double well
potential (λ = 0 and µ = 1). The separatrix (dashed
line) emanates from the maximum of the potential,
and it separates the two types of motions encoun-
tered in this system.

3. Bifurcations of Periodic Orbits

The phase space structure of a dynamical system is
determined by locating stationary objects, such as
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(i) equilibrium points, (ii) periodic orbits, (iii) tori,
(iv) reduced dimension tori, and (v) stable and
unstable manifolds [Guckenheimer & Holmes, 1983;
Wiggins, 2003].

Equilibrium points and periodic orbits located
for a range of energies or any other parameter,
are a good starting point to portrait the struc-
ture of phase space of small molecules. This has
been demonstrated by studying together the classi-
cal and quantum mechanics for several triatomic
molecules [Farantos, 1996; Ishikawa et al., 1999;
Joyeux et al., 2002; Joyeux et al., 2005]. If a global
PES is available in a curvilinear coordinate sys-
tem for the molecule, we need general and robust
algorithms to locate periodic solutions of the equa-
tions of motion. This problem is formulated as
follows.

If H(q,p) is the Hamiltonian of a system with
N degrees of freedom, the equations of motion are
written in Hamilton’s form as,

dqi

dt
= q̇i(t) =

∂H

∂pi

dpi

dt
= ṗi(t) = −∂H

∂qi
, i = 1, . . . , N.

(14)

qi, i = 1, . . . , N, are the generalized coordinates
and pi, i = 1, . . . , N, their conjugate momenta. The
symplectic properties [Arnold, 1980] of these equa-
tions are better shown by considering coordinates
and momenta as the components of the generalized
coordinate vector x,

x = (q1, . . . , qN , p1, . . . , pN )+, (15)

where + denotes the transpose of the 2N -D column
vector. The equations of motion are then written,

ẋ(t) = J
∂H(x)

∂x
≡ J∂H(x) ≡ J∇H(x), (16)

where J is the symplectic matrix,

J =
(

0N IN

−IN 0N

)
. (17)

0N and IN are the zero and unit N × N matrices,
respectively. J∇H(x) is a vector field, and J satis-
fies the relations,

J−1 = −J and J2 = −I2N . (18)

To locate in general stationary objects we solve
a two-point boundary value problem, i.e. we want
to find those specific trajectories which satisfy at

two different times t = 0 and t = T a relation

B[x(0),x(T )] = 0. (19)

For example, to find periodic orbits we impose the
following two-point boundary conditions

x(T ) − x(0) = 0, (20)

where T is the period of time after which the trajec-
tory by integrating the equations of motion returns
to its initial point in phase space, x0 = x(0).

The equilibrium points are defined by requiring
ẋ = 0, or

∇H(x) = 0. (21)

Since ẋ(T ) = ẋ(0), we can see that the equilibrium
points are also solutions of Eq. (20).

To locate PO for a specific period T we
study the linearized system based on the Hartman–
Grobman theorem [Guckenheimer & Holmes, 1983]
which states that there is a continuous change of
coordinates that relates the linearization to the vec-
tor field (J∇H(x)). Thus, important conclusions
obtained from the linearized system apply to the
nonlinear one as well.

If x(t) is a solution of Eq. (16) we want to know
the behavior of a nearby trajectory

x′(t) = x(t) + ζ(t). (22)

From Eq. (16) we have,

ẋ′(t) − ẋ(t) = J∇H(x′) − J∇H(x). (23)

A Taylor expansion of the rhs of Eq. (23) up to the
first order gives,

ζ̇(t) = J∂2H(x(t))ζ(t). (24)

∂2H(x(t)) denotes the matrix of second derivatives
of the Hamiltonian evaluated at the original trajec-
tory x(t) for time t.

If,

A(t) = J∂2H(x(t)),

then Eq. (24) is written as,

ζ̇(t) = A(t)ζ(t). (25)

These are 2N linear differential equations with time
dependent coefficients, and they are called varia-
tional equations.

The general solution of Eq. (25) can be
expressed by evaluating the fundamental matrix
at time t, Z(t) [Yakubovich & Starzhinskii,
1975]. This is the matrix with columns vectors
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(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1) at t = 0,
i.e.

Z(0) = I2N . (26)

The general solution of Eq. (24) is then given by,

ζ(t) = Z(t)ζ(0), (27)

where ζ(0) describes the initial displacement from
the trajectory x0. The fundamental matrix satisfies
the variational equations as can be easily proved;

Ż(t) = A(t)Z(t). (28)

Thus, by solving Eqs. (16) and (28) we obtain the
trajectory with the chosen initial conditions and
the behavior of the nearby trajectories at the lin-
ear approximation.

For periodic orbits the fundamental matrix at
t = T ,

M = Z(T ) =
∂x(T )
∂x0

, (29)

is called monodromy matrix, the eigenvalues of
which determine the stability of periodic orbit
[Wiggins, 2003]. Because of the symplectic prop-
erty of Hamiltonian systems if λi is an eigen-
value of the monodromy matrix, then its complex
conjugate λ∗

i , as well as the λ−1
i and (λ−1

i )∗ are
also eigenvalues. The properties of the monodromy
matrix and the different cases of stability have been
described before [Farantos, 1992]. For a system of
three degrees of freedom the eigenvalues and thus
the kinds of stability are represented in Fig. 11.
As energy varies, the eigenvalues of stable periodic
orbits move on the unit complex circle. When the
eigenvalues are out of the unit circle but on the real
axis the periodic orbit is single or double unstable,
and finally four complex eigenvalues out of the unit
circle characterize a complex unstable PO.

Stationary points and periodic orbits are
located numerically with a new version of POMULT
program written in Fortran95 [Farantos, 1998].
We apply multiple shooting methods which con-
vert the two-point boundary value problem to
m-initial value problems, i.e. we search for the
appropriate initial values of coordinates and
momenta which satisfy the boundary condi-
tions and the continuity equations [Farantos,
1998] which guarantee a smooth orbit. Ana-
lytic first and second derivatives of the poten-
tial function required for the solution of the
equations of motion and the variational equations
are computed by the AUTO–DERIV, a Fortran
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Fig. 11. Eigenvalues of the monodromy matrix for a
molecule with three degrees of freedom. There are three pairs
of complex conjugate eigenvalues one of which is always equal
to one (not shown). The other two pairs move in the complex
plane as energy varies. The positions of these eigenvalues with
respect to the complex unit circle determine the stability of
the PO.

code for automatic differentiation of an analytic
function of many variables written in Fortran
[Stamatiadis et al., 2000].

4. Application to the 1B2-State
of Ozone

Ozone is an important molecule for atmospheric
chemistry because of its role in shielding earth from
the harmful UV light. There have been numer-
ous studies of its spectroscopy and photodissoci-
ation [Houston, 2003]. The absorption of the UV
radiation excites electronically the molecule to the
(21A1) and the (11B2) states. Recently, we have car-
ried out theoretical ab initio calculations and we
have shown that the two notorious absorption bands
observed, Huggins and Hartley, are due to the exci-
tation of the molecule from the ground electronic
state to the (11B2) state [Qu et al., 2004a, 2004b].
The mechanism of the photodissociation of ozone
is complicated because of the involvement of sev-
eral excited states. Nevertheless, the construction
of an analytical function for the diabatic (11B2)
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state of ozone, as well as the calculation of high
quality quantum mechanical vibrational eigenfunc-
tions up to the dissociation threshold, as a result
of the previous studies, lead us to investigate fur-
ther the dynamics of the molecule in this excited
state. Here, we apply our periodic orbit techniques
to explore the structure of phase space, and thus,
to trace reaction paths on this surface.

The potential energy for the diabatic 1B2-state
of ozone has been described in detail before [Qu
et al., 2004a, 2004b]. The equilibrium geometry of
ozone in this excited state has a Cs symmetry, with
one long-bond and one short-bond, in contrast to
the ground electronic state where the minimum is of
C2v symmetry with two equal bonds. Because of the
permutational symmetry of the molecule there are
three equivalent minima and several saddle points
among them. In Table 1 we tabulate the geometries
and the energies of one minimum and related saddle
points. The nuclear configurations are described in
Jacobi coordinates, which are the distance R, of the
long-bond oxygen atom from the center of mass of
the short-bond end atoms whose bond length is r,
and the angle γ between the vectors R and r (see
Fig. 12). This Jacobi coordinate system is appro-
priate to describe the dissociation of a triatomic
molecule.

All quantum mechanical calculations are for
zero total angular momentum. The discrete variable
representation [Light & Carrington, 2000] (DVR)
is used to represent the Hamiltonian matrix. The
calculations are done in symmetric-Jacobi coordi-
nates: R′ is now the distance from the central oxy-
gen atom to the center of mass of the two end
atoms, r′ the distance between the two end atoms,
and γ′ denotes the angle between the vectors R′
and r′. The choice of this coordinate system sim-
plifies the quantum mechanical calculations, since
the Hamiltonian is symmetric with respect to the
exchange of the two end atoms, i.e. it is symmetric
with respect to γ′ = 90◦. Thus, the eigenstates are

Table 1. Equilibrium points of the diabatic 1B2 PES of
ozone.

Stationary Point Order r R γ Energy

minimum 0 2.258 3.751 2.198 3.429
saddle-1 1 2.310 5.400 1.993 4.053
saddle-2 1 2.703 3.401 2.294 4.108
saddle-3 1 2.275 3.583 1.571 4.181
saddle-4 2 2.301 4.126 1.571 4.242

O(1D)+O2(a
1∆g) 2 2.316 ∞ — 4.046

Fig. 12. Potential energy contours for the diabatic 1B2-state
of ozone. Energies are in electronvolts, distances in Bohrs and
the angle in radians. The energies cover the interval of (4.0–
4.5) eV in 0.033 eV steps. The points shown on the graph
mark the saddle points 1 (dotted circle), 2 (stars), 3 (filled
circle) and 4 (filled square) (see Table 1). The periodic orbits
overlayed are discussed in the text.

either symmetric or antisymmetric with respect to
γ′ = 90◦ (see Fig. 15). Therefore, results related to
the quantum mechanical calculations will be pre-
sented in the symmetric-Jacobi coordinate system,
otherwise in the following with Jacobi coordinates
we mean the originally defined for the asymmetric
geometry.

The selected grid parameters are 0.5 a0 ≤ R′ ≤
3.0 a0 with 64 potential optimized points [Echave &
Clary, 1992] and 3.0 a0 ≤ r′ ≤ 7.0 a0 with 64 poten-
tial optimized points. The angular coordinate is rep-
resented by 64 Gauss–Legendre quadrature points
[Bacic & Light, 1989] in the interval 0 ≤ γ′ ≤ 90◦.
Only those points are retained in the grid whose
potential energy is smaller than 6.5 eV. Two types of
calculations have been performed; Filter diagonal-
ization [Grozdanov et al., 1995; Wall & Neuhauser,
1995] and harmonic inversion [Mandelshtam &
Taylor, 1997]. More details are given in [Qu et al.,
2004a, 2004b].

In Fig. 12, isopotential curves are depicted
in the (R, γ) plane. The symbols on this picture
mark the positions of the saddle points tabulated
in Table 1. The saddle points which separate two
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equivalent minima by exchanging their short and
long bonds are denoted by stars. The geometry of
this saddle is better portrayed in projections of the
potential function in the plane with the two bond
lengths of the molecule as coordinates shown in
Fig. 1 of [Qu et al., 2004a, 2004b]. Note the dif-
ferences in the values of r for the saddle points.
Except for saddle-4 which is of second order, i.e. it
has two unstable directions with imaginary frequen-
cies, all the other saddles are of single order. The
stable degree of freedom for saddle-4 is the short-
bond r as can be seen in Fig. 12 where this saddle
point appears as a maximum.

The normal mode frequencies are estimated to
be ω3 = 1585 cm−1 for the short-bond local mode,
ω1 = 743 cm−1 for the long-bond local mode, and
ω2 = 400 cm−1 for the bend. They are in an approx-
imate ω2 : ω1 : ω3 = 1 : 2 : 4 resonance.

The evolution of the normal mode frequencies
with increasing energy in a nonlinear potential is
better represented in a projection of the continua-
tion/bifurcation (C/B) diagram [Allgower & Georg,
1993] in the (E,ω) plane of those families of periodic
orbits associated with the normal modes [Weinstein,
1973; Moser, 1976], named fundamental or princi-
pal families [Farantos, 1996; Ishikawa et al., 1999;
Joyeux et al., 2002]. In Fig. 13 the three principal

3.5 4 4.5
E / eV

200

400

600

800

 ω
 (

cm
-1

)

S3/2S1

SN1A

SN2A

SN3A

SN4A

B1

B1A

SN1C

SN2C

SN3C

S1A

SN5A
SN1B

SN2B

s-1 s-2 s-3 s-4

Fig. 13. C/B diagram of the 1B2-state of ozone. S1 denotes
the long-bond mode, S1A its double period bifurcation. S3
the short-bond mode, B1 the bend mode and B1A an early
saddle-node bifurcation of B1. The symbol SN denotes cas-
cades of saddle-node bifurcations. SNiA is related with the
S1 family, SNiB with S1A family whereas the SNiC with the
B1A. The arrows mark the energies of the saddle points (s-i)
in the potential. PO families related with the s-2 have not
been located.

families of periodic orbits are shown and they are
denoted as S1 for the long-bond stretch, B1 for
the bend and S3 for the short-bond stretch. B1
exhibits an early saddle-node bifurcation, B1A, at
about 3.475 eV with a tiny energy gap, whereas
a double period bifurcation is found for the S1
(S1A) at about 3.78 eV. As we can see in this fig-
ure the three most anharmonic families, S1, S1A
and B1A, develop cascades of saddle-node bifur-
cations as energy approaches the dissociation limit
(saddle-1) for the SNiB, the saddle-3 for the SNiC
cascade, and saddle-4 for the SNiA, respectively.
We have not searched for the PO which point to
the saddle-2. The saddle-node bifurcations are of
similar type as found in the quartic potential. The
frequency of the parent family levels off as energy
approaches the critical energy where bifurcation
occurs, with the appearance of a saddle-node bifur-
cation one branch of which inherits the character-
istics of the parent family. The whole scenario is
repeated at higher energies resulting in a cascade
of such SN bifurcations. We do not distinguish the
stability of the PO in this bifurcation diagram. In
most cases the anharmonic branch is stable, at least
for some energy, and the other branch is unstable,
and therefore it is difficult to continue in energy.
However, for a three-dimensional system, like ours,
a SN bifurcation may show one single unstable and
one double unstable branch instead, as is depicted
in Fig. 11. For larger molecules with more degrees
of freedom the number of combinations of course
increases.

Representative PO at energies about 3.8 eV (if
they exist) are depicted in Fig. 12. From this figure
it becomes apparent that the double period bifur-
cation (S1A) and the SNiB families of PO are those
which are directed towards the dissociation channel.

In Fig. 13 the point symbols denote the quan-
tum mechanical frequencies obtained from the
energy differences of adjacent eigenstates whose
wave functions can be clearly assigned. They
are state overtone progressions of the short-bond
stretch (S3), bend (B1A) and long-bond stretch
(S1). The corresponding eigenfunctions have well
recognized nodal structures, and therefore the num-
ber of excitation quanta in each mode can easily
be assigned as (0, 0, v3) for the S3 states, (0, v2, 0)
for B1A and (v1, 0, 0) for the S1 states. In order
to approximately account for the zero-point energy,
the quantum results are shifted to lower energies
by the zero-point energy. The energy differences are
plotted with respect to the upper level.
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Representative eigenfunctions with their as-
signment are shown in Fig. 14 and more in [Qu
et al., 2004a, 2004b]. The wave functions are plotted
in symmetric Jacobi coordinates. The plots show
the |Ψ|2 for a specific iso-probability density surface
viewed along γ′ axis, in the direction perpendicular
to the (r′, R′) plane. To see their correspondence
to the periodic orbits which have been assigned, in
Fig. 15 we plot the periodic orbits in the symmetric
Jacobi (r′, R′) plane and for fixed angle γ′ = 111◦.
The ranges of the coordinate intervals are the same
as in the wave functions.

In the symmetric Jacobi coordinates the S3 pro-
gression (short-bond mode) has mainly excitation
along the perpendicular direction (γ′). The bend

Fig. 14. Representative wave functions which show the char-
acteristic localization in configuration space of the main over-
tone progressions. Symmetric Jacobi coordinates are used.
The plots are viewed along the γ′ axis, in the direction per-
pendicular to the (r′, R′) plane. The values of axes are for
r′ [3.0, 7.0] a.u. and R′ [0.5, 3.0] a.u. Shading emphasizes the
3D character of the wave functions.

Fig. 15. Projection of the potential function and periodic
orbits in the (r′, R′) plane in symmetric Jacobi coordinates.
The angle γ′ is kept fixed at 111◦.

progression from the beginning is associated with
the SN bifurcating family B1A and not with the
principal bending family which is B1. As we can see
in Fig. 13 there is a good agreement among the clas-
sical and quantum mechanical B1A frequencies for
most of the assigned energies. However, differences
are found for the S1 progression. These correspond
to the long bond stretching states. The agreement
among S1 PO and quantum frequencies is satisfac-
tory up to four quanta of excitation (4, 0, 0). At the
(5, 0, 0) state systematic mixing with another type
of states sets in. Obviously, the (7, 0, 0) state shown
in Fig. 14 is influenced from the double period bifur-
cation of the S1 family, S1A. This explains the devi-
ation of the quantum frequencies from the classical
curve S1, in Fig. 13.

Unfortunately, for higher energies the mix-
ing in the wave functions becomes significant and
that prohibits their visual assignment. However,
we expect that wave functions which are directed
towards the dissociation channel are associated with
SN bifurcations and particularly with the SNiB
families. Indeed, at energies close to the dissociation
barrier we found localized eigenfunctions similar to
the SNiB PO (see Fig. 14). It is difficult to assign
adjacent levels for this family of states, and thus,
the frequency of approximately 200 cm−1 given to
this state in Fig. 13 is only an estimate.

In previous studies, such as HOCl [Weish
et al., 2000] and HOBr [Azzam et al., 2003], the
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association of quantum mechanical overtone pro-
gressions from the bottom of the well up to the dis-
sociation threshold, with saddle-node bifurcations
has clearly been shown. Recently, in a study of the
CH2(ã1A1) molecule we have found unequivocally
assigned progressions of quantum states which lead
above the isomerization and dissociation barriers
[Farantos et al., 2004; Lin et al., 2005], and they
also follow the tracks of SN bifurcations. The agree-
ment is not only in the frequencies but also among
periodic orbits and eigenfunctions.

The saddle-node bifurcations which approach
an equilibrium point have the characteristics of the
SN bifurcation observed in the two parameter quar-
tic potential, i.e. it springs off a main family of PO
with a gap in the energy. In the case of molecules the
second parameter is generated from the coupling of
the vibrational modes. Indeed, we can show that the
cascade of SN bifurcations is the result of high order
resonances between two vibrational modes. How-
ever, SN bifurcations are also found above the bar-
riers of isomerization/dissociation [Farantos, 1996].
There is evidence that they result from the unstable
periodic orbits originated from the saddle point and
the Newhouse wild hyperbolic set [Newhouse, 1979;
Borondo et al., 1996; Contopoulos et al., 1996].
These periodic orbits seem to have no connection
to any main family and they appear abruptly like
the cubic polynomial type.

The cubic and quartic models seem to fit with
our experience in locating SN bifurcations in molec-
ular Hamiltonians. The quartic type, those which
are associated with a parent family, are found
by monitoring the curvature of the continuation
curve of the parent family. Continuation is car-
ried out using the period as a parameter than
the total energy. Then the derivatives dω(E)/dE
and d2ω(E)/dE2 signal the approach to the critical
energy of bifurcation. By giving a proper increment
to the period we overcome the gap and join the
branch of the SN family which is the continuation
of the parent family. In the continuation scheme
the starting initial conditions are those of a peri-
odic orbit before the gap with period T0 and then
POMULT converges to a new PO with a period
T0 + ∆T in one of the two branches of SN bifurca-
tion. This is how we can find several members in a
cascade of SN bifurcations.

The cubic type is not associated with a par-
ent family but it appears in the neighborhood of
stable/unstable entanglements of a principal unsta-
ble periodic orbit which always exist above saddle

points of the potential [Moser, 1976]. Thus, we ini-
tially propagate the stable and the unstable man-
ifolds for some energies, and then search for low
order periodic orbits in their neighborhood.

5. Conclusions

Figure 4 shows the typical phase space structure
close to the SN bifurcation of a 1-D one param-
eter cubic potential; a stable region surrounded by
unstable trajectories. This reveals the importance of
saddle-node bifurcations. Their sudden appearance
in phase space with increasing energy may create
stable regions even if the dynamics is chaotic at
lower energies. If the stability region is compara-
ble to the volume of �

N , then semiclassically we
expect the localization of an eigenfunction. The SN
elementary bifurcation is generic and robust, per-
turbations in the potential do not vanish a SN bifur-
cation, as in the cubic potential the introduction of
one additional parameter (α �= 0) does not change
the structure of the phase space. For molecules we
have found two kinds of saddle-node bifurcations of
periodic orbits. The first kind is associated to a par-
ent family. The second seems to be related to the
stable and unstable manifolds of unstable periodic
orbits.

Another important elementary bifurcation is
the Hamiltonian–Hopf bifurcation [van der Meer,
1985] which is encountered in three-dimensional
systems and in systems with higher dimensionality.
A Hopf-like bifurcation is expected when the two
pairs of eigenvalues of the monodromy matrix are
out of the unit complex circle (see Fig. 11). Acety-
lene is one example for which such bifurcations have
been found [Contopoulos et al., 1994; Prosmiti &
Farantos, 1995]. In the future we plan to investi-
gate further Hopf-like bifurcations in relation to the
dynamics and spectroscopy of molecules.
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