
www.elsevier.com/locate/cplett

Chemical Physics Letters 399 (2004) 260–265
A regular isomerization path among chaotic
vibrational states of CH2ð~a1A1Þ

Stavros C. Farantos a,b,*, Shi Ying Lin c, Hua Guo c

a Department of Chemistry, University of Crete, Iraklion, Crete 71110, Greece
b Institute of Electronic Structure and Laser, FORTH, Iraklion 71110, Greece

c Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA

Received 21 September 2004; in final form 5 October 2004

Available online 28 October 2004
Abstract

The nearest neighbor level spacing and D3 distributions indicate that the vibrational spectrum of CH2ð~a1A1Þ is largely chaotic.

Nevertheless, regular localized states coexist with the chaotic ones and they are related to overtone states of the principal vibrational

modes. Periodic orbits accompanied by a stability analysis identify these states and explain their topologies and localization in con-

figuration space. Particularly, the bending vibrational mode which is associated to the isomerization pathway which connects two

equivalent minima separated by a linear symmetric saddle point, shows the dip in energy level spacings at the region of the saddle

point. The corresponding wave functions are identified by periodic orbits emanated from saddle-node bifurcations below and above

the barrier of isomerization.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Vibrational molecular spectroscopy has seen signifi-

cant advances in the last decades [1]. Methods such as

Stimulated Emission Pumping, Laser Induced Fluores-

cence and Overtone Spectroscopy are among those used

to excite molecules at high vibrational levels and record

spectra close and above the isomerization or dissocia-

tion thresholds. Parallel to the experimental work new

theories and algorithms have been developed to calcu-
late hundreds of vibrational quantum energy levels

and wave functions using accurate potential energy sur-

faces (PES). The importance of this work stems from

our efforts in understanding the dynamics of the mole-

cule close to the reaction threshold.

The PES, even for a triatomic molecule, is a complex

non-linear multi-dimensional function with a landscape
0009-2614/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.cplett.2004.10.018

* Corresponding author. Fax: +30 2810 391305.

E-mail address: farantos@iesl.forth.gr (S.C. Farantos).
that has several minima and saddle points. In elemen-

tary chemical reactions specific bonds break and/or form
requiring the localization of energy to specific regions of

the PES. How such processes can be traced in the vibra-

tional spectra? To answer this question usually a global

molecular potential produced by ab initio electronic

structure calculations is employed. Given the PES the

eigenenergies and the eigenfunctions of the molecule

are calculated by solving the nuclear Schrödinger equa-

tion. Although for small molecules it is feasible to exam-
ine every state separately, generally some statistical

measures related to the energy difference of adjacent lev-

els are used to distinguish regular from chaotic behav-

iors. Nevertheless, at high excitation energies the

knowledge of the eigenenergies and eigenfunctions alone

is not enough to extract the mechanisms of energy local-

ization, and thus, the breaking/forming of a bond. Such

mechanisms are better investigated in the limit of classi-
cal mechanics. Classical mechanics provide the means

for a detailed analysis of the motions of non-linear sys-

tems. In Hamiltonian systems stationary phase space
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structures, among which periodic orbits, tori, stable and

unstable manifolds, play the protagonists role in eluci-

dating the dynamics.

The stationary (or equilibrium) points of the poten-

tial function (minima, maxima and saddles) dictate the

dynamics of molecules in the nearby energies. However,
if we want to understand chemical reactions the poten-

tial function alone is not adequate. The knowledge of

the geometry of phase space is required. For example,

it has recently been shown, that the very important con-

cept of the transition state, a hypersurface in phase

space which reactive trajectories must cross only once,

is based on the definition of the phase space structure

called normally hyperbolic invariant manifold (NHIM)
[2–4]. The need for phase space objects in elucidating

the dynamics of the molecule at energies far from the

equilibrium points becomes imperative. The molecule

even before reaching the reaction (isomerization or dis-

sociation) threshold develops complicated phase space

structures when resonance conditions are satisfied

among its degrees of freedom. These structures, which

may be regular or chaotic, are energy dependent and
they may be formed or destroyed as energy varies.

As stationary points determine the topography of the

PES, periodic orbits (POs) play a similar role for the

topology of phase space. They determine the dynamics

of the molecule in their neighborhoods, but most impor-

tantly, at energies far from the equilibrium points. Plots

of the initial conditions or/and the periods of POs with

the energy consist of what we call continuation/bifurca-
tion (C/B) diagrams [5–8]. POs and C/B diagrams enable

us to establish a classical-quantum correspondence and to

illustrate spectroscopic peculiarities and the topologies of

the wave functions. We have applied the above scheme to

several triatomic molecules and for bound and unbound

energies. Via POswe follow the evolution of normalmode

motions to higher energies where non-linearities are

important. Bifurcations of periodic orbits mean the gene-
sis of new POs, and thus, new type of motions.

The methylene (CH2) molecule in its first singlet ex-

cited state, ~a1A1, has been the theme of recent quantum

dynamical studies by some of us [9–11]. These studies

were mainly concerned with the reactive and inelastic

scattering between C(1D) and H2. CH2 is an important

intermediate in many organic reactions, in astrochemis-

try as well as in combustion processes. Thus, it is not
surprising that it has been the subject of extensive spect-

roscopic investigations [12] and theoretical calculations

[13]. The purpose of the present article is to examine vib-

rationally bound states of the molecule excited above

the linearization barrier. For symmetric collinear geom-

etries (H–C–H) there is a saddle point which separates

the two minima with C2v symmetry of the molecule.

We show that the overtone states are regular in spite
of the overall irregular behavior extracted from the sta-

tistics in level spacing. More importantly, we demon-
strate that the dip observed in level spacing of the

bend overtones at energies close to the isomerization

threshold is due to states which are associated with peri-

odic orbits emanated from saddle-node bifurcations be-

low and above the saddle-point. These results are

discussed in connection to previous studies on a spheri-
cal pendulum model [14] and HCP molecule [6,15].
2. Numerical methods

A hierarchical way to extract the global dynamics of

a dynamical system starts with the location of the sta-

tionary points on the PES. If we denote the generalized
coordinates by~q and their conjugate momenta by~p, the
stationary points are those points in phase space which

satisfy the equations ~_q ¼ 0 and ~_p ¼ 0, i.e., generalized

velocities and forces are zero. The next step is to locate

periodic orbits. Periodic solutions with period T of the

equations of motion are found by locating those initial

coordinates and momenta which satisfy the equations
~qðT Þ ¼~qð0Þ and ~pðT Þ ¼~pð0Þ.

Stationary points and periodic orbits are located with

the program POMULTOMULT, a package of Fortran programs

which implement multiple shooting algorithms for solv-

ing two-point boundary value problems [16]. The poten-

tial energy surface for the ~a1A1-state of CH2 has been

described before [17,18]. Analytic first and second deriv-

atives of the potential function required in the calcula-

tion of periodic orbits and their stability analysis are
computed by the AUTO_DERIV, a Fortran code for

automatic differentiation of any analytic function of

many variables written in Fortran [19].

Following our previous practice we extract the global

classical dynamics of methylene on the ~a1A1 potential by

locating families of periodic orbits. We start from the

minimum of the potential by finding the principal fami-

lies which correspond to the normal modes of the mol-
ecule. Then, continuation methods applied with the

period as a parameter [20] reveal how the stability of

the periodic orbits change with energy in a specific fam-

ily. Bifurcations are predicted and new families of POs

are located. The C/B diagram is then compared with

the quantum mechanical vibrational overtone level spac-

ing. To investigate how the normal modes evolve from

the minimum to the saddle point we find POs in an en-
ergy range which spans more than 2 eV.

The vibrational energy levels of CH2(J = 0) were

determined using the recursive Lanczos algorithm [21].

The wave functions were generated by assembling the

Lanczos vectors in additional recursion [22]. The reac-

tant (C + H2) Jacobi coordinates (r,R,h) was used to

take advantage of the exchange symmetry. The discreti-

zation of the Hamiltonian has been detailed in our pre-
vious work [9] and is not discussed here. The numerical

parameters are summarized as follows: 188 equidistant
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grid points were taken for R 2 (0,16) a.u., and 99 equi-

distant grid points for r 2 (0.5,15) a.u. A 35-point

Gauss–Legendre quadrature DVR was used for the

angular degree of freedom, which corresponds to

jmax = 68. The PES and the rotational kinetic energy

were truncated at 0.5 Hartree. Seventy five thousand
Lanczos steps were found to be sufficient to converge

all bound states with even exchange symmetry.
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Fig. 1. Nearest neighbor spacing distribution (a) and D3 distribution

(b) of CH2 bound states for J = 0 and even exchange symmetry. The

Poisson and Wigner distributions represent the regular and chaotic

limits for the NNSD. For the D3 distribution, the chaotic limit is given

by the Gaussian Orthogonal Ensemble (GOE).
3. Results and discussion

A total of 602 vibrational states was found below the

dissociation limit. Due to the space limitation only low-
lying energy levels are listed in Table 1. The normal

mode assignments are also given in the same table.

The assignments were based primarily on the node

structure of the corresponding eigenstates. As energy in-

creases, the assignment becomes more difficult because

of the irregularities of eigenstates and Fermi resonances.

Three misassignments at 8241, 8328, and 8361 cm�1 re-

ported in our earlier work [9] are corrected. To investi-
gate the statistical behavior of the bound state

spectrum, the nearest neighbor spacing distribution

(NNSD) and D3 distribution were computed and de-

picted in Fig. 1. The spectrum was first unfolded using

the method of Haller et al. [23] so that the mean nearest

neighbor spacing is close to unity. As the figure shows,

the NNSD is close to the Wigner distribution [24], indi-

cating that the short-range fluctuation of the vibrational
Table 1

Low-lying CH2 vibrational levels for J = 0 and even symmetry

E (cm�1) (v1,v2,v3) E (cm�1) (v1,v2,v3)

0.0 (0,0,0) 8944.11 (0,8,0)

1338.05 (0,1,0) 9112.61 (1,5,0)

2642.88 (0,2,0) 9335.60 (2,3,0)

2803.76 (1,0,0) 9476.89 (3,1,0)

3903.92 (0,3,0) 9579.31 (0,3,2)

4122.54 (1,1,0) 9660.49 (1,1,2)

5116.99 (0,4,0) 9929.59 (0,9,0)

5414.01 (1,2,0) 10144.73 (1,6,0)

5530.31 (2,0,0) 10512.15 (2,4,0)

5750.89 (0,0,2) 10628.63 (4,0,0)

6271.16 (0,5,0) 10746.48 (3,2,0)

6663.19 (1,3,0) 10783.76 (0,4,2)

6847.48 (2,1,0) 10871.44 (1,2,2)

7052.02 (0,1,2) 10908.99 (1,7,0)

7333.04 (0,6,0) 10961.77 (2,1,2)

7857.92 (1,4,0) 11143.00 (0,10,0)

8094.74 (2,2,0) 11189.04 (0,0,4)

8176.25 (3,0,0) 11584.63 (1,8,0)

8241.72 (0,7,0) 11786.95 (2,5,0)

8328.78 (0,2,2) 11884.94 (4,1,0)

8361.41 (1,0,2) 11951.04 (0,5,2)

The assignment is given in normal mode quantum numbers (v1,v2,v3)

for symmetric stretch, bend, and anti-symmetric stretch modes,

respectively.
spectrum is mostly chaotic. To be more quantitative, the

distribution is also fitted to the Brody distribution[25],

as shown in the same figure. The fitted Brody parameter

of 0.64 confirms significant level repulsion in the system.

The long-range D3 distribution[26] also indicate the

dominance of the chaotic character.

As the figure shows the NNSD is close to the Wigner

distribution[24], indicating that the short-range fluctua-
tion of the vibrational spectrum is mostly chaotic. The

long range D3 distribution [26] also indicates the domi-

nance of the chaotic character.

The potential has two equivalent minima of C2v sym-

metry separated by a linear saddle point (1.095 eV).

From each minimum a number of families of stable peri-

odic orbits emanate at least as many as the number of

normal modes the motions of which represent [27].
For saddle points the principal periodic orbits are unsta-

ble [28]. A projection of the continuation/bifurcation

diagram of POs is to plot the frequencies (x = 2p/T)
of the periodic orbits as functions of the total energy.

Such a C/B diagram is shown in Fig. 2.

The continuous lines denote the frequencies of peri-

odic orbits as functions of the total energy E. A3 is

the family that corresponds to the bend normal mode,
A2 to the symmetric stretch and A1 to the asymmetric

stretch mode. The harmonic frequencies are estimated

to be x1 = 3069 cm�1 for the asymmetric stretch, and

x2 = 2906 cm�1 for the symmetric stretch,

and x3 = 1382 cm�1 for the bend. Note that the A2
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and A3 families show a negative anharmonicity (fre-

quencies increase) very close to the minimum of the

potential. It is difficult to say whether this is an artifact
of the potential function or a genuine behavior of meth-

ylene. The continuation lines in Fig. 2 do not distinguish

stable from unstable POs. The A1 family remains stable

for the energy range shown but the A2 symmetric stretch

family becomes early single unstable and after its bifur-

cation at about 0.7 eV double unstable. The bifurcating

A2A1 family is initially single unstable but it becomes

stable at energies above the saddle point. The A3 is sta-
ble up to the barrier of isomerization after which it be-

comes single and later double unstable. We may

conclude that extended chaos sets in at energies above

the linearization barrier.

As we have shown in our previous studies [5–8] the

Hamiltonian saddle-node (SN) bifurcation is the most

common elementary bifurcation [29] found in molecular

systems. Their importance is due to the creation of new
periodic orbits suddenly at some critical energy with sta-

ble motions embedded in chaotic regions. That causes

the localization of energy, a significant effect in chemical

dynamics. A cascade of such SN bifurcations appear as

we approach the saddle point of the linearized molecule.

This scenario, seen also previously, is typical as the par-

ent family approaches the bifurcation critical energy. Its

frequency levels off and two new families appear with
one branch showing high anharmonicity. As energy in-

creases the frequency of the daughter most anharmonic

family starts leveling off again and a new SN bifurcation

takes place. The mechanism of generating this cascade

of saddle-node bifurcations can be understood as a cas-

cade of resonances between coupled oscillators [30].
Representative periodic orbits are shown in Fig. 3

projected in the (R,r) Jacobi coordinate plane and over-

layed on the potential contours. The A1 PO has mainly
excitation along the angle Jacobi coordinate. The ener-

gies of these periodic orbits are above the barrier of line-

arization. The SN_I1 represents periodic orbits which

surpass the barrier of isomerization. These POs also

originate from a saddle-node bifurcation and as we de-

scribe it later on they mark isomerizing quantum states.

The classical frequencies are compared with the en-

ergy difference between adjacent quantum eigenenergies
for the three series of overtone vibrational progressions.

We have not tried to semiclassically quantize accurately

the periodic orbits [31]. In a rather simple approach we

compare classical and quantum mechanical eigenfre-

quencies, by shifting the quantum energies by the zero-

point-energy and we plot the energy differences with

respect to the upper level. As we can see, the anharmo-

nicity of the overtone states closely follows that of the
frequencies of the periodic orbits. The good correspond-

ence among POs and eigenfunctions is better demon-

strated in a pictorial way in Fig. 4.

We see that in spite of the irregular behavior pre-

dicted by the statistical measures for CH2ð~a1A1Þ, the

overtone states of the bending mode are regular and well

localized in configuration space up to and above the bar-

rier to linearization. This was one of the conclusions of
Green et al. [13]. These investigators carried out an

extensive ab initio study of the two lowest singlet excited

states of methylene, ~a1A1 and ~b
1
B1, which are degener-

ate for linear geometries and they are separated for pla-

nar geometries because of the Renner–Teller interaction.

Since this work takes in account the Renner–Teller
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interaction in the rotation–vibration calculations and it

concludes as us, we may infer that there is no strong

interaction between the two surfaces.

It turns out, that the cascade of saddle-node bifurca-

tions of periodic orbits is a generic mechanism to ap-

proach isomerization or dissociation thresholds as

previous studies in triatomic molecules have revealed

[6–8]. The stable or the least unstable branches of these
bifurcations trace the most stable regions in phase space

where the quantum mechanical eigenfunctions are local-

ized. Spectroscopic evidence for such states, also named

saddle-node, have been found for HCP [6]. The spectro-

scopic characteristic of this molecule is a 2:1 Fermi res-

onance between the CP stretch and bend. Jacobson and

Child [14,15] studied a spherical pendulum model

Hamiltonian of the Fermi resonance and found the
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dip in the energy level spacing, which is a characteristic

of the saddle point. However, as the authors point out

one must be aware of the differences in the above the

barrier states for molecules which mimic a spherical pen-

dulum model, like HCP, and Renner–Teller systems like

the one studied in this article. Although spectroscopic
differences for these two molecules, HCP and CH2, are

expected, the classical interpretation by periodic orbits

is the same; the quantum states are associated to sad-

dle-node bifurcations. Above the barrier the SN periodic

orbits are those which connect the two minima and they

have been named isomerizing.

An interesting question is whether SN bifurcations

below and above the barrier have the same origin.
Those which are born below the barrier may be

thought of as the result of the rapid change in the

anharmonicity along the reaction path which brings

the system in multiple resonances as energy varies.

On the other hand, those above the barrier are asso-

ciated with the unstable periodic orbits originated

from the saddle point and the Newhouse wild hyper-

bolic set [32,5,33]. Obviously, more studies are need
to answer this question.
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