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1. Introduction

We are at the point where we can make our first analysis of an actual experiment.1 The experiment
will be explained first. Then thermodynamics will be used to show that the experiment is isoenthalpic
(meaning a constant enthalpy process). With this result, we can then explain the main result of the experi-
ment in terms of the properties of the gases involved.

2. The Joule-Thomson Experiment

The apparatus itself is quite simple. Imagine a tube with a porous plate separating it into two parts.
The porous plate will allow a gas to go through it, but only slowly. It acts as a throttle. On each side of the
plate there is a piston that fits the tube tightly. Each piston can (in principle) be pushed up against the
porous plate. The tube itself is insulated so that no heat can enter or leave the tube.2

The experiment is also quite simple. Imagine that some gas is placed between the porous plate and
the piston on the left side of the tube. This is side 1. On the other side the piston is flush against the porous
plate. This is side 2.

The initial volume of gas on side 1 is V1. The pressure is p1 and the temperature T1.

Now during the experiment gas is pushed through the porous plate by pushing on the piston on the
left side. At the same time the piston on the right side is pulled in such a way that the pressure on the right
side is always p2.3

At the end of the experiment all of the gas has been pushed through the porous plate. The volume on
side 1 is zero. The final volume on the right side (side 2) is V2, the pressure is p2 and the temperature T2.

The curious result of this experiment is that careful measurement shows that T2 is not equal to T1.
Under some conditions it is higher, under others it is lower.

The problem is to decide how to analyse this.

1 Although we do need to drag in one result that will not be obtained until later in the course.
2 There is a drawing of the apparatus on page 69 of Atkins.
3 Of course, p2 must be less than p1.
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3. Initial Analysis

The process starts with volume V1 = V1 and volume V2 = 0. It ends with volume V1 = 0 and volume
V2 = V2. The work done on the left side is: w1 = − p1(0 − V1). The work done on the right side is:
W2 = − p2(V2 − 0).

The total work done is then:

w = p1V1 − p2V2 (1)

Since the process is adiabatic, the total change in U is just the work, or

∆U = U2 − U1 = p1V1 = p2V2 (2)

U2 + p2V2 = U1 + p1V1 (3)

so that:

H2 = H1 (4)

and the process is isoenthalpic.

4. The Joule-Thomson Coefficient

What is measured experimentally is

µJT =
∆ p→0
lim

T2 − T1

p2 − p1
(5)

which becomes, taking into account that the process is isoenthalpic:

µJT = 


∂T
∂ p


H

(6)

All that we’ve done so far is reduced the experiment to mathematics. The experimental result is that
µJT is sometimes positive and sometimes negative. In fact it is found that there is a certain temperature
called the inversion temperature such that if the initial temperature T1 is above the inversion temperature,
the final temperature is higher than the initial temperature. If the initial temperature is below the inversion
temperature, the final temperature is lower than the initial temperature. The inversion temperature is found,
experimentally, to depend on the pressure.

To understand this we need to relate µJT to quantities that are experimentally measureable.4

4 The ability to do this is one of the main points of thermodynamics.
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To do this we can start with the total differential of H assuming that T and p are the independent
variables:

dH = 


∂H
∂T


p

dT + 


∂H
∂ p


T

dp (7)

Now our process is isoenthalpic, so dH = 0. This gives:

0 = 


∂H
∂T


p

dT + 


∂H
∂ p


T

dp (8)

Now I divide through by dp at constant H to get:5




∂H
∂T


p




∂T
∂ p


H

+ 


∂H
∂ p


T

(9)

Note the subscript H at the appropriate point in eq. (9). Lastly, let us solve for (∂T /∂p)H to get:

(∂T /∂p)H = −
(∂H /∂p)T

(∂H /∂T )p
(10)

This result simplifies a bit right away. We know that (∂H /∂T )p is the heat capacity C p, so:

(∂T /∂p)H = −
(∂H /∂p)T

C p
(11)

but we can’t make it any simpler. We need to express (∂H /∂p)T in terms that can be measured. Indeed,
this can be done, but it requires one slight bit of magic. A result that will be proven later6




∂H
∂p


T

= V − T 


∂V
∂T


p

(12)

which, when used in eq. (11) gives:

µJT =
T (∂V /∂T )p − V

C p
(13)

a neat equation in which all of the quantities are measureable.

5 This is a touchy point. Pure mathematicians would perhaps object to treating an infinitesimal as if it were a
finite quantity. But this procedure of dividing by dx (where here x = p) in thermodyanmic equations can be
justified mathematically and we do it all the time. Perhaps the best way to think of it is to think of dp (or what-
ev er) as actually representing a very small, but finite change in pressure. Then at the very end let all infinitesi-
mal ratios go to their limits.

6 They always say this, right?
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So we come to the end of the theory with a formula but no explanation. It all seems to depend on
how the volume of the gas changes with temperature and on the heat capacity. How can we learn anything
more? Well, we can look at model gases, that is, gases for which we know the equation of state. Looking
at some of these may tell us something.

5. The Joule-Thomson Coefficient for Model Gases

If we knew the equation of state for a gas, we could calculate the Joule-Thomson coefficient. For
instance, for an ideal gas (∂V /∂T )p = V /T , so

µJT = 0 ideal gas (14)

Ideal gases are boring.

But they hav e told us something. There is no Joule-Thomson effect for an ideal gas at all. And how
do ideal gases differ from real gases? They hav e no interactions at all. No attractiions and no repulsions.
But that’s the only way in which they differ. So we conclude that the Joule-Thomson effect depends on the
interactions between gas molecules.

A gas obeying van der Waals equation will prove more interesting. Since we can’t solve van der
Waals equation for V explicitly7 we have to use an approximation. A convenient one is eq 1.10a in Atkins.
This can be written

Z = 1 +
1

RT

b −

a
RT


 p + . . . (15)

which is the first two terms of the virial equation approximation for a van der Waals gas.

We want to take this expression, solve it for V , and then differentiate it to get (∂V /∂T )p. With this
available we can plug into eq. (13) and calculate µJT.

Now since Z = pV /RT , we can solve eq. (15) for V to get:

V =
RT
p

+ 
b −

a
RT


 + . . . (16)

What we want is (∂V /∂T )p. From eq. (16) we get:




∂V
∂T


p

=
R
p

+
a

RT 2 + . . . (17)

Now this has to be multiplied by T . This gives:8

7 It’s a cubic in V , remember?
8 I’m showing all the steps. Nobody expects you to memorize this stuff. Just read it and learn where the

Joule-Thomson effect comes from.
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T 


∂V
∂T


p

=
RT
p

+
a

RT
+ . . . (18)

And now subtracting V as given in eq. (16) we get (after some cancellations:

T 


∂V
∂T


p

− V = − 
b −

2a
RT


 + . . . (19)

and so, finally, the Joule-Thomson coefficient for a gas obeying van der Waals equation is:

µJT =

2a
RT

− b

C p
+ . . . (20)

OK, you can’t tell much from this equation all by itself except that it certainly looks messy. But
there is a way theoreticians handle things like this: they look at the extremes. Let’s see what happens to
the Joule-Thomson coefficient when the temperature gets very low. That is, what is the limit when T goes
to 0? Well, as T goes to 0, all terms with T in the denominator get very large. So the term involving
2a/RT gets much larger than b. And the b term can be neglected at very low temperatures.

µJT =
2a

RTC p
+ . . . (very low temperature) (21)

which is clearly positive since every term in it is positive. This agrees with experiment. A positive Joule-
Thomson coefficient means cooling. But also note that the resulting expression only contains the van der
Waals a. All of the terms involving b have gone away at low temperature.

We can also look at what happens when T gets very large. This result is quite simple since all terms
containing a T in the denominator go to zero. The result is:

µJT = −
b

C p
(very high temperature) (22)

and that’s very interesting. First, it agrees with experiment since it is negative, meaning heating. Second,
notice that all of the terms involving van der Waals a have now vanished, leaving only b.

Lastly, it should be pointed out that there is one way in which eq. (20) does not agree with experi-
ment. Eq. (20) predicts an inversion temperature of:

Tinversion =
2a
bR

(van der Waals gas) (23)

which is gotten by setting µJT equal to zero in eq. (20). The problem is that this inversion temperature is
not a function of the pressure. Experimentally the inversion temperature is a function of the pressure. If
we’d carried one more term in eq. (15) we would have had a (much more messy) result that is a function of
pressure.
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6. Conclusions

So what can we conclude? Several things. First, since µJT is positive at low temperatures and neg-
ative at high temperatures, it must have an inv ersion temperature. Second, the effect seems to depend (as
we expected) on the attractive and repulsive forces acting between molecules. At low temperatures the
attractive forces predominate.9 At high temperatures the repulsive forces predominate.10 So the Joule-
Thomson effect can be explained this way: At low temperatures the intermolecular attraction is the most
important interaction. When the cold gas is expanded, the average distance between molecules is
increased. This means that the molecules are pulled apart. Since they attract each other this takes energy.
And since the process is adiabatic, the only source of energy is the internal energy of the gas itself. So,
with the internal energy reduced, the gas cools.

On the other hand, at high enough temperatures the predominant interaction is repulsion. The gas
wants to separate. It wants to expand. When it does expand energy is obtained as the molecules separate.
This increases the internal energy of the gas. And the gas heats.

9 Remember, a accounts for the attractiongs between molecules in van der Waals equation.
10 The ones associated with b.


