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Abstract

The general structures of the vibrational states of HCO and its isotopomer DCO are analyzed in terms of periodic
orbits (POs) and continuation/bifurcation diagrams. Both bound and resonance states are considered. It is shown that
the members of the pure overtones are guided by POs, even in the continuum. In particular, it is demonstrated that the
highly anharmonic states localized along the dissociation coordinate correspond to orbits originating from saddle-node
bifurcations in the classical phase space. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

In two publications Keller et al. presented
quantum mechanical calculations for bound as
well as resonance states, that is quasi-bound states
above the first dissociation threshold, for HCO [1]
and DCO [2]. An analytical potential energy sur-
face (PES) was used, which was constructed from
accurate ab initio calculations [3]. The agreement
of the calculated energies and resonance widths
with data obtained from high resolution stimu-
lated emission pumping (SEP) spectra [4,5] was
excellent. For HCO, 15 bound states and 123
resonances were analyzed and the energy covered a
range of ~2 eV above the H+CO threshold. For
DCO, 29 bound states and about 140 resonances
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were investigated spanning an energy range of
~1.4 eV above threshold.

For HCO the coupling between the three in-
ternal degrees of freedom is comparably weak and
therefore an assignment of the majority of the
bound states as well as the resonance states in
terms of three quantum numbers (v, v;,v3) is
straightforward [1]; in what follows, vy, v,, and v
are the H(D)C stretch, the CO stretch and the
bending quantum numbers, respectively. All three
fundamental excitation energies for HCO are quite
different so that resonance effects are basically not
existing at lower energies. However, because the
HC mode is — due to the shallow potential well of
about 0.8 eV - strongly anharmonic, a 1:2
stretch:bend Fermi-type resonance, i.e., two
quanta of the bending mode are roughly equal to
one quantum of the HC mode, develops at higher
energies and leads to considerable mixing [1].

For DCO, on the other hand, anharmonic
mixings exist already for the lowest vibrational
states [2,6,7] and become even stronger with in-
creasing energy. The reason is an (accidental) 1:1:2
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resonance of the three fundamental frequencies:
One quantum of DC stretch is worth one quantum
of the CO stretch mode and two quanta of the
bending mode. As a consequence, the majority of
bound and resonance states cannot be clearly as-
signed in the usual sense by counting the nodes
along the three coordinate axes; therefore, many of
the assignments given in Table 1 in [2], based on
projecting the exact wavefunctions on certain nu-
merically defined zeroth-order wavefunctions, are
rather vague. However, the wavefunctions shown
in Fig. 11 of [2] are regular with recognizable nodal
patterns, although not always along the normal
coordinate directions.

Recently, Troellsch and Temps [8] have ana-
lyzed the bound and resonance states of DCO by
using an effective polyad Hamiltonian. By intro-
ducing the inherent 1:1:2 multiple resonance
among the three vibrational frequencies and fitting
the parameters of the Hamiltonian to the experi-
mental vibrational energies they were able to
achieve good agreement with the observed levels
and confirmed many of the assignments made
before.

Understanding and assigning highly excited
states of molecules — even if only three degrees of
freedom are involved — is a general problem of
molecular spectroscopy [9]. As energy increases the
simple behavior usually found at low energies
might change dramatically when particular effects
like bifurcations, for example, arise [10]. However,
applying tools developed in the last decades in
nonlinear mechanics and employing semiclassical
approximations are tremendously helpful in cir-
cumventing some of these problems. Particularly,
the use of periodic orbits (POs) to explore the
structure of the classical phase space over an ex-
tended energy range has been proved to be very
valuable [11-13]. This approach has led to sys-
tematic studies of so-called continuation/bifurca-
tion (C/B) diagrams of POs for a variety of
molecules. The central conclusion of these studies
is that families of POs offer an alternative way to
assign spectra. HCP is an illuminating example for
such an analysis [14].

In the present Letter we analyze the vibrational
spectra of DCO and HCO in a similar fashion. The
main structure of the classical phase space is re-

vealed, and it is shown that the quantum me-
chanical vibrational states can be classified in
terms of this structure.

2. PES and computational methods

The PES for the ground electronic state of HCO
has been described in detail in [1]. The dynamics
calculations are performed in terms of the Jacobi
coordinates appropriate for the dissociation into
H(D)+CO: R is the distance of H(D) from the
center of mass of CO, r is the bond length of CO
and y is the angle between R and 7. The energy of
the global minimum of the PES is —0.8339 eV and
is located at R =3.0215ay, r=2.2325qa, and
y = 144.86°. The potential is zero for infinitely
separated H(D) and CO with CO at equilibrium
bond length. The dissociation barrier is 0.1254 eV
and is located at R = 4.2341ay, r = 2.14894a, and
y = 131.94°.

The classical Hamiltonian for zero total angular
momentum reads

p P ( 1 1 ) .
H=-Ff 4yr 4 + P;

T 2mi  2m, 2mrR?  2m, 12

+V(R,r,7), (1)

where Py, P, and P, are the momenta conjugate to
the Jacobi coordinates. The reduced masses are
given by

mcmo

_ (mc + mo) mx o
r—
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- )
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(2)

where my = my or mp. Energies will be expressed
in eV unless stated otherwise.

Details of how the periodic solutions for the
classical equations of motion are computed and
techniques for continuing these solutions in a pa-
rameter space have been described elsewhere [15].
To find the first PO for each family we exploit well-
known existence theorems [16,17] of POs near the
equilibria points of the potential function. Indi-
vidual members of a family of POs are found by
generalized Newton—-Raphson multiple shooting
methods [15]. The continuation of a family with
energy leads to the construction of the C/B dia-
grams. After a PO is found its stability is analyzed,
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which provides information about the character of
nearby trajectories, i.e., whether it is stable or
unstable.

3. Results and discussion
3.1. DCO

In constructing the continuation/bifurcation
diagram, first the principal families of POs, i.e.,
those which start from the minimum of the po-
tential, are located. During the continuation step
several bifurcations are observed with the new POs
having either the same period or multiples of the
periods of the parent POs. In Fig. 1 we depict the
C/B diagram for DCO. Shown are the frequencies
of the POs (2n#/T, where T is the period) as
functions of the total energy, E. In order to keep
the presentation clear, we show only the principal
families ([SS], [AS] and [B]) and the first members
of a series of saddle-node bifurcations ([SN1],
[SN2], ...). They are sufficient for describing the
main characteristics of the phase space structure
and assigning the quantum mechanical overtone
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Fig. 1. Frequencies of the POs for the principal families and
saddle-node bifurcations as functions of the total energy E in
eVs (1 eV = 8065.541 cm™!) for DCO. The symbols are the
energy differences between neighboring quantum mechanical
states (plotted with respect to the energy of the lower state) of
the four progressions: circles (1, v,,0), squares (0, v,,0), trian-
gles (v1,0,0) and diamonds (0, 0, v3). The dashed line connects
the quantum levels of the SS overtone states (squares) to em-
phasize their oscillatory structure. See the text for more details.

states. Saddle-node POs come into existence at
critical energies and do not exist at lower energies.
They have two branches: at the onset one branch
corresponds to a stable PO whereas the other one
consists of unstable POs.

Owing to the 1:1 stretch:stretch resonance the
two stretch degrees of freedom are strongly mixed.
As a consequence, the two POs which describe the
stretching motion are neither parallel to R nor to r
as clearly seen in Fig. 2, where in the first two
columns examples of POs of the [AS] and [SS]
types are shown for several energies. Since the two
POs describe essentially symmetric and asymmet-
ric stretching motions — especially at low energies,
we will refer to the symmetric stretch (SS) and the
asymmetric stretch (AS) families in what follows,
despite the fact that the molecule has no distinct
symmetry. The bending mode ([B]) can be clearly
distinguished. The POs of the [AS] family remain
stable up to the energy of 0.86 eV; at this value it
undergoes a ‘simple’ bifurcation (POs with the
same period emerge). The [SS] family is stable up
to 0.75 eV where it undergoes a period-doubling
bifurcation. A period-doubling bifurcation occurs
for the [B] family at —0.077 eV, where the POs
become single-unstable; a new period-doubling
bifurcation takes place at 0.26 eV rendering the [B]
family doubly unstable.

POs which represent dissociation come into
existence at energies significantly above the mini-
mum (E = —0.418 eV) in the first saddle-node bi-
furcation, [SN1]. Examples of POs belonging to
the various [SN] families are depicted in the third
column of Fig. 2. The initially stable branch of the
[SN1] saddle-node bifurcation quickly becomes
unstable and it shows several bifurcations as the
energy increases. However, extended regions of
stability were traced in its continuation with en-
ergy. Because the [SN] type orbits advance along
the dissociation coordinate, their frequency rap-
idly decreases with increasing energy. It appears as
if the [SN] POs are the extensions of the low-en-
ergy [AS] branch.

Included in the C/B diagram are the quantum
mechanical transition frequencies of four pure
progressions, which in the normal-mode termi-
nology — appropriate for the lowest states — have
the assignments: (v;,0,0), (0,v,,0), (1,v,,0) and
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Fig. 2. Contour plots of the modulus square of eigenfunctions for DCO in the two stretch coordinates R and r. The lines superimposed
on the contour lines are POs which characterize the eigenfunctions. The first column shows POs and wavefunctions of the [AS] type,
the second column depicts POs and wavefunctions of the [SS] type and the third column contains orbits and wavefunctions of the [SN1]
type. The first number in each panel is the transition energy (in cm™') with respect to the ground state and the second number is the
normal-mode asignment according to [2]. For further details see the text. The corresponding two-dimensional potential is shown in the

extra panel.
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(0,0,v3). With pure progressions we mean states
having wavefunctions with the maxima and min-
ima aligned along a line without excitation in di-
rections perpendicular to this line — like pearls on a
necklace. Shown are the energy differences be-
tween adjacent levels of these progressions. This
figure suggests that the bending states, (0,0, v3),
correlate with the [B] POs, the (0, v, 0) states with
the [SS] orbits and the (1, v,,0) states correspond
to the [AS] POs. The states with excitation in the
dissociation mode (v;,0,0) are clearly related to
the [SN] POs (see Fig. 2).

These relations between the POs, on one hand,
and the quantum mechanical states, on the other,
are further substantiated by comparing the POs
with the quantum mechanical wavefunctions (Fig.
2). Other examples of assignable eigenfunctions
without excitation in the bending mode (v; = 0)
can be seen in Fig. 11 of [2]. In Fig. 2 the states are
organized in terms of increasing polyad quantum
number P = v; 4+ v; + v3/2. In each polyad there
are P+ 1 different states. A similar plot for a
representative state with bending excitation is gi-
ven in Fig. 3. There the contours of the wave-
functions are plotted in the (R,y) plane. Also
shown in Fig. 3 is the wavefunction for state
(2,0,0).

Figs. 1 and 2 together, beyond doubt, make
clear that the states, which are characterized as
DC stretch (v1,0,0), correspond to the saddle-
node POs. Only the first level, (1,0,0), must be
attributed to the [AS] type of POs. At the energy
of the next excited level, (2,0,0), the saddle-node
bifurcation [SN1] has appeared and marks the
domains in phase space where eigenfunctions lo-
calized along the R coordinate can be found. The
correspondence between the [SN] POs and the

(v1,0,0) wavefunctions is particularly clear for the
higher members. The highest level of this pro-
gression, (4,0,0), lies just above the (classical)
potential barrier to dissociation. Because of the
direct excitation of the dissociation mode, the
states (5,0,0), (6,0,0), etc. have very broad line
widths and had not been identified in the quan-
tum calculations [2]. Other regular and well lo-
calized eigenstates corresponding to the [SN] POs
are shown in Fig. 11 of [2]. However, they do not
further extend in the R direction but the addi-
tional energy is stored in the r coordinate. These
states can be clearly assigned as (4, 1,0), (4,2,0),
etc.

According to the PO assignment the (1, v,,0)
states should be labeled as [AS] states. Their as-
signment as (1,v,,0) in [2] was not made in view
of the apparent nodal structure but with respect
to a decomposition in terms of a set of basis
functions. Table 1 in [2] clearly shows that the
(1,v,,0) states are highly mixed. The (0,v,,0)
states should be assigned as [SS] states. This
correspondence is very clear for the highest
members of this progression, but less obvious for
the lower ones. That at lower energies the back-
bones of the (0, v,,0) states do not exactly follow
the corresponding [SS] POs indicates significant
mixing with other states. The small oscillations of
the quantum mechanical frequencies of the [SS]
states around the classical frequency very likely
have the same origin.

3.2. HCO

As the three fundamental excitation energies
are quite different, complications due to mixing
effects are much less prominent for HCO than
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Fig. 3. The same as in Fig. 2 but the eigenfunctions are shown in the (R,7) plane.
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they are for DCO. As a consequence, all of the
bound states and most of the resonance states can
be readily assigned. Nevertheless, mixing effects
are not completely absent and do affect some of
the states. Two quanta of excitation in the
bending mode (2139 cm™') are roughly worth one
quantum of the HC stretch mode (2437 cm™!).
As a consequence, states with the same polyad
quantum number P = v; +v3/2 are grouped to-
gether in polyads, for the same CO stretch
quantum number v,. At lower energies the spac-
ing between states within the same polyad is rel-
atively large and mixing is weak. However,
because the HC mode is very anharmonic, the
spacing among the states decreases and the mix-
ing becomes stronger. As a result, the wavefunc-
tions for some states do not have an immediately
apparent assignment (see below). Like for DCO,
an analysis in terms of POs is helpful for under-
standing these subtleties.

Fig. 4 shows the C/B diagram of the principal
families and saddle-node POs in the energy-fre-
quency domain and Fig. 5 presents the contours
of representative eigenfunctions in the (R,y)
plane with the POs superimposed. Additional
plots of wavefunction can be found in Fig. 8§ of

pos)
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Fig. 4. Frequencies of the POs for the principal families and the
saddle-node bifurcations as functions of the total energy E in
eVs (1 eV = 8065.541 cm™') for HCO. The symbols are the
energy differences between neighboring quantum mechanical
states (plotted with respect to the energy of the lower state) of
the three progressions: circles (v, 0,0), squares (0,v,,0) and
diamonds (0, 0, v3). See the text for more details.

[1]. All the states shown are without excitation in
the r stretch. For HCO we denote the principal
families of POs as [R] stretch, [r] stretch and [B]
bend, because the orbits are clearly aligned
along one of the three axes, at least at low
energies.

The [R] family shows an early bifurcation
with period-doubling at —0.26 eV where a new
family, termed [R2A], appears. After this energy
the [R] POs become single-unstable up to about
1.35 eV where they become stable again. Around
0.74 eV the [R2A] family becomes unstable
through a simple bifurcation. The [r] family loses
its stability with a period-doubling bifurcation at
—0.12 eV. The [B] principal family becomes un-
stable in a period-doubling bifurcation at about
—0.39 eV and completely unstable at 1.668 eV.
The [SN1] appears just below the barrier to
dissociation.

As can be seen in Fig. 4, at low energies
the frequencies of the two stretch families and the
bending family are well separated. However as
the energy increases the anharmonicity of the
potential along the dissociation mode causes the
frequency of the [R] type POs to drastically de-
crease. It approaches the frequency of the [r]
family or two times the frequency of the bending
mode. The coupling between R and r is relatively
weak so that these two modes do not interact
appreciably. However, the coupling between R
and y is stronger leading to a profound 1:2 res-
onance condition. This leads to the period-dou-
bling bifurcation and the birth of the [R2A] POs.
The corresponding (curved) orbits in the lower
row of Fig. 5 clearly illustrate the 1:2 resonance
between R and y. Just below the barrier to dis-
sociation the [SN1] family emerges. The [SN] type
POs are qualitatively similar to the [R] POs and
therefore must be considered as their continua-
tions to higher energies beyond the period-dou-
bling bifurcation.

In Fig. 5 we can see that the bending over-
tones (0,0, v3) are clearly marked by the POs of
the [B] family. Likewise, the CO stretch overtone
wavefunctions (not shown) clearly follow the [r]
type POs. The first excited state in the R coor-
dinate, (1,0,0), is marked by an [R] type PO.
However, the next state, (2,0,0), shows a mixed
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Fig. 5. Contour plots of the modulus square of eigenfunctions for HCO in the (R,7) plane. The lines superimposed on the contour
curves are POs which characterize the eigenfunctions. They are of the [B] type (panels 1-7), the [R] type (panel 8), the [R2A] type
(panels 9-11), and the [SN1] type (panel 12). The first number in each panel is the transition energy (in cm~"') with respect to the ground
state and the second number is the normal-mode asignment according to [1]. For further details see the text. The corresponding two-

dimensional potential is shown in the extra panel.

character of [R] and [R2A] POs. The well-local-
ized (3,0, 0) state is due to the penetration of this
state in the domain of the [SN1] type POs. Fi-
nally, the [R2A] POs are the backbones of states
like (1,0,1), (2,0,1) and (1,0,4) (the latter is
shown in Fig. 8 of [1]). Because the states with
higher excitation in the dissociation mode are
very short-lived, they have not been identified
in [1].

4. Conclusions

In this Letter a PO analysis and a classification
of the vibrational overtone levels of DCO and HCO
have been presented. Establishing relations be-
tween POs, on one hand, and quantum mechanical
energy levels, on the other, not only provides an
assignment, which is free of the coordinate system
used, but also reveals details of the dynamical
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behavior in regions of the phase space where the
dynamics is dominated by resonances. Assignments
in terms of POs often are more meaningful than
assignments in terms of normal mode quantum
numbers. The most interesting observation is the
existence of saddle-node bifurcations in the classi-
cal phase space, which leads to the birth of a new
progression at energies well above the global min-
imum. As a consequence, there are four instead of
three overtone progressions.

This behavior is somehow reminiscent of HOCI
and HCP. In HOCI, POs which at low energies
advance along the dissociation coordinate at
higher energies change their behavior and avoid
the dissociation channel. POs advancing along the
fragmentation coordinate come into existence at a
saddle-node bifurcation [18,19]. In HCP a similar
behavior is observed for the bending coordinate
[14]. In both cases there is a 1:2 resonance between
the bending and one of the stretches. In DCO,
there is a 1:1 resonance between the two stretch
modes. In all these examples one of the critical
modes involved in the resonance is the ‘reaction’
coordinate — the dissociation coordinate in HOCI
and DCO or the isomerization coordinate in HCP.

Locating POs in systems with more than two
degrees of freedom is, due to the existence of dif-
ferent sorts of bifurcations, a complicated task.
However, the present study as well as previous
ones on triatomic systems demonstrates that
finding the principal families and a few bifurca-
tions with low multiplicity is sufficient to reveal the
main topological characteristics of the eigenfunc-
tions and to understand the spectrum over wide
ranges of energies.

Saddle-node states are characteristic features of
all nonlinear systems, including strongly bound
molecules. DCO and HCO are two more examples
for which they have been seen in experimental
spectra. HCP was the first molecule for which [SN]
states have been identified in a measured spectrum
[20].
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