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A detailed analysis of the bound-state spectrum of HOCl~hypoclorous acid! in the ground electronic
state is presented. Exact quantum mechanical calculations~filter diagonalization! are performed
employing an ab initio potential energy surface, which has been constructed using the
multireference configuration-interaction method and a quintuple-zeta one-particle basis set. The
wave functions of all bound states up to the HO1Cl dissociation threshold are visually inspected in
order to assign the spectrum in a rigorous way and to elucidate how the spectrum develops with
energy. The dominant features are~1! a 2:1 anharmonic resonance between the bending mode and
the OCl stretching mode, which is gradually tuned in as the energy increases, and~2! a saddle-node
bifurcation, i.e., the sudden birth of a new family of states. The bifurcation is further investigated in
terms of the structure of the classical phase space~periodic orbits, continuation/bifurcation
diagram!. It is also discussed how the spectrum of bound states persists into the continuum and how
the various types of quantum mechanical continuum wave functions affect the state-specific
dissociation rates. ©2000 American Institute of Physics.@S0021-9606~99!00901-0#
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I. INTRODUCTION

The spectrum of vibrational states of a molecule refle
in a unique way the intramolecular forces.1 It is usually regu-
lar and easily assignable in terms of a set of quantum n
bers, provided the excitation energy is not too high, i.e.,
displacements of the vibrational coordinates from equi
rium are small.2 With increasing energy the coupling be
tween the modes typically grows with the consequence
the spectrum becomes more complex and the assignme
the states gradually becomes more difficult.3 Eventually the
dynamics is mainly irregular and the majority of states c
not be straightforwardly labeled by quantum numbers. T
‘‘rate’’ with which this change occurs depends, of course,
the particular molecule, i.e., the potential energy surf
~PES! and the masses of the constituent atoms.

As one climbs up the ladder of vibrational energies,
teresting effects may occur.4 A common effect is the exis
tence of an anharmonic resonance — the near degenera
vibrational levels, which leads to a substantial mixing of t
corresponding~zero-order! basis functions.5–9 As a result of
such resonances the energy levels are grouped into poly
Examples, which have been recently investigated in so
detail by us, include the 1:1 DC stretch : CO stretch re
nance in DCO,10 the 1:1 NO stretch : HNO bend resonance
HNO,11 and the 1:2 HCP bend : CP stretch resonance
HCP.12,13 In all these examples the resonances are alre
present in the fundamentals and continue to shape the s
trum up to high energies. Another possibility is that tw

a!Electronic mail: rschink@gwdg.de
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frequencies gradually tune into resonance as the energy
creases, because one mode is considerably more anharm
than the other one. The result is that the mixing between
modes gradually develops with energy and becomes f
established at relatively high energies. An example, wh
will be investigated in the present study, is the 2:1 HO
bend : OCl stretch resonance in HOCl.

Anharmonic resonances bring about intriguing effects
one follows the spectrum from low to high energies, e.g.,
birth of a completely new class of wave functions, which d
not exist at lower energies. Such an effect, known as sad
node or tangent bifurcation in the nonlinear dynam
literature,14,15 has been predicted to happen in HCP12 and
indeed has been observed in stimulated emission pum
~SEP! spectra.13,16 As we will demonstrate in the presen
work a similar bifurcation exists in HOCl.

Understanding the structure of a quantum mechan
spectrum over an extended energy regime can be quite c
bersome, even for a triatomic molecule. However, in num
ous applications it has been demonstrated that classical
chanics, especially periodic orbits17,18 and continuation/
bifurcation diagrams,19 can be extremely helpful in
interpreting quantum spectra. This has been shown
HCP12 and it is likewise true for HOCl.

The bound states of a molecule do not abruptly termin
at the dissociation threshold, but persist into the continu
as resonance or quasibound states.20 While bound states are
the real poles of the Green’s function, resonances are p
in the complex energy plane with the imaginary parts rep
senting the dissociation rates or the inverse of the lifetim
© 2000 American Institute of Physics
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The decay of resonance states is intimately related to uni
lecular dissociation processes.21,22Whether a resonance sta
decays slowly or fast ultimately depends on the structure
the corresponding wave function. In a recent article we fou
that at threshold the dissociation rate of HOCl varies
more than seven orders of magnitude.23 In the present article
we attempt to rationalize this ‘‘unexpectedly broad’’ dist
bution of resonance widths in terms of the nature of the w
functions near the HO1Cl threshold.

The spectroscopy24,25 and dissociation26–28 of HOCl are
the target of recent experimental interest. However, due
experimental limitations~vibrational overtone spectroscopy!
only states in the vicinity of overtones of the HO bond a
considered — out of the;800 bound states merely 2%–3
have been experimentally analyzed. Parallel to our own
oretical work, the spectroscopy and dissociation of HOC
currently under investigation — using an independently c
culatedab initio PES — by Skokov and co-workers.29–32We
will refer to their work in the following when it is appropri
ate.

The subject of the present article is a comprehens
analysis of the HOCl spectrum from the bottom of the p
tential well to the HO1Cl dissociation threshold and abov
We will focus the discussion on~i! how the level pattern and
the underlying wave functions change with energy,~ii ! how
new states appear as a consequence of a saddle-node
cation of the classical phase space, and~iii ! how the structure
of the bound-state spectrum affects the state-specific di
ciation rates. The article is organized in the following wa
The ab initio calculations and the analytical fit of the PE
will be described in Sec. II, followed by a brief account
the dynamics calculations in Sec. III. The evolution of t
bound states is the topic of Sec. IV, followed by classi
calculations in Sec. V, which elucidate the gross feature
the quantum spectrum in terms of a continuation/bifurcat
diagram. The consequences of the various types of w
functions for the dissociation rates are explicated in Sec.
The main results are summarized in Sec. VII. In a futu
paper we will provide a more detailed analysis of the bou
state structure in terms of a two-dimensional~2D! model, in
which the HO stretching degree of freedom is adiabatica
separated.33 The reduction to two degrees of freedom allow
a more detailed analysis of the variation of the class
phase space with energy and the classical/quantum mec
cal correspondence. Additional clues about the spectrum
HOCl are obtained from a description in terms of a 1:2 re
nance Hamiltonian model, fitted to either the 2D or the thr
dimensional ~3D! quantum mechanical energy lev
spectrum.33

II. POTENTIAL ENERGY SURFACE

A. Ab initio calculations

The total energies of hypochlorous acid are calcula
using the internally contracted multireference configurat
interaction method, icMRCI.34,35 The one-particle basis se
employed in this study is the correlation-consistent polari
basis set of quintuple-zeta quality, cc-pV5Z.36,37 The cc-
pV5Z basis set consists of a (20s12p4d3 f 2g1h)/
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
o-

f
d
y

e

to

e-
s
l-

e
-

ifur-

o-
:

l
of
n
ve
I.
e
-

y

l
ni-
of
-
-

d
n

d

@7s6p4d3 f 2g1h# set for chlorine, a (14s8p4d3 f 2g1h)/
@6s5p4d3 f 2g1h# set for oxygen, and a (8s4p3d2 f 1g)/
@5s4p3d2 f 1g# set for hydrogen, thus resulting in a molec
lar one-particle basis set of 241 contracted functions. O
the spherical harmonic components of thed throughh polar-
ization functions are used. The reference wave function
the icMRCI calculations consists of a full valence comple
active space~CAS!. The wave function thus includes all ex
citations of 14 valence electrons in 9 molecular orbitals c
responding to the valence atomicsp orbitals of chlorine and
oxygen, and the 1s orbital of hydrogen. For each point of th
PES, the reference wave function is determined in the co
plete active space self-consistent field calculat
~CASSCF!.38,39The molecular 1s- and 2sp-like core orbitals
of chlorine and the 1s-like core orbital of oxygen are kep
doubly occupied in all the configurations and optimized.
the vicinity of the minimum of the PES, the CI-expansio
coefficient of the SCF configuration in the CASSCF wa
function is determined to be about 0.98 and there are o
two excited configurations with coefficients greater th
0.05. The total energy of hypochlorous acid is determined
the following icMRCI calculation, in which all single and
double excitations with respect to the reference wave fu
tion are included and external configurations are interna
contracted.34,35 The molecular core orbitals are kept doub
occupied in all the configurations. This results in over o
million contracted configurations~in contrast to over 75 mil-
lion uncontracted configurations!. The multireference David-
son correction40,41 to the calculated energy~icMRCI1Q! is
then employed to approximately account for the effects
higher excitations. The total energies are determined to
accuracy better than 1028 hartree. The calculations are pe
formed using theMOLPRO-96program.42

B. Analytical fit

The PES is constructed by varying the two bond d
tancesRHO andROCl and the HOCl bond anglea on a three-
dimensional grid: 2.5a0<ROCl<9a0 , 1.3a0<RHO<3.5a0 ,
and 20°<a<160°. The grid spacings areDROCl5DRHO

50.1a0 , andDa510° for the largest part of the grid. Nea
the equilibrium smaller spacings are chosen, whereas
large OCl distances the grid is coarser. Altogether we h
calculated 1234 points. Only the HO1Cl exit channel is
sampled; the other two dissociation channels, O1HCl and
H1OCl,43,44are energetically considerably higher and the
fore not considered in the present work.

The analytical fit expression uses the three bond d
tancesRHO, ROCl , and RClH rather than the two bond dis
tances and the HOCl bond angle. It is hoped that this give
more reasonable extrapolation to the two linear configu
tions (a50° and 180°, where noab initio points have been
calculated!. Following Sorbie and Murrell45 the total poten-
tial is written as

V~ROCl ,RHO,RClH!5VI~ROCl ,RHO,RClH!1vHO~RHO!,
~1!

with VI going to zero for large OCl bond distances. Becau
of some numerical instabilities of theab initio calculations at
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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large OCl distances, we do not calculate the asymptotic
oscillator, but use instead the Morse expression for it,

vHO~RHO!5DHO@12e2bHO(RHO2RHO
e )#2. ~2!

The parameters are taken from the literature:46 DHO54.621
eV, bHO51.2139a0

21, andRHO
e 51.8323a0 . In what follows,

energy normalization is such thatE50 corresponds to
HO1Cl with the HO distance fixed at equilibrium. The ‘‘in
teraction potential’’ is written as a threefold sum of on
dimensional functions,

VI~ROCl ,RHO,RClH!

5 1
2 @11tanh~62ROCl!#

3(
i 50

7

(
j 50

7

(
l 50

7

ai j l gi~RHO!hj~ROCl!dl~RClH!, ~3!

with

gi~RHO!5@12e2kHO(RHO2R̄HO)# i , ~4!

hj~ROCl!5@12e2kOCl(ROCl2R̄OCl)# j 1121, ~5!

dl~RClH!5@12e2kClH(RClH2R̄ClH)# l . ~6!

The nonlinear parameters are:R̄HO51.85a0 , R̄OCl53.2a0 ,
R̄ClH54a0 , kHO50.3a0

21, kOCl50.8a0
21, and kClH

50.1a0
21. All functions hj (ROCl) go to zero asROCl goes to

infinity. In order to avoid spurious features at large distanc
where fewer points have been calculated, the additio
damping factor in Eq.~3! is introduced.

The linear parametersai j l are determined using a leas
squares procedure employing a singular va
decomposition.47 In order to decrease the overall deviatio
from the ab initio points, we actually performed two inde
pendent fits; the resulting interaction potentials are deno
by VI

(1) andVI
(2) , respectively. In the first fit, all points with

energies below the HO1Cl threshold are taken into accou
with weight one, whereas points with energies above
threshold are given a smaller weight. In the second fit
points are included with identical weight. Thus,VI

(1) pro-
vides a more accurate description of the potential well, wh
VI

(2) gives a better description of the global potential, inclu
ing both the well region and the repulsive parts of the pot
tial. The final expression for the PES is a weighted sum
both fits, with a switching function which ensures that t
two expressions are smoothly joined, i.e.,

V5~ t21!VI
(1)1tVI

(2)1vHO. ~7!

The switching function is defined by

t5 1
2 $11tanh@8~VI

(2)1vHO10.8!#%. ~8!

The potential energies in Eq.~8! are given in electron volts
For energies below20.8 eV the potential is mainly deter
mined byVI

(1) , whereas for energies above20.8 eV,VI
(2) is

the dominant part.
The rms deviation of the fit from theab initio points is

5.9 meV including only points from the minimum toE50
and 8.8 meV, if points up to an energy of 4 eV above
threshold are taken into account. The deviations for point
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
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the vicinity of the equilibrium configuration are well below
meV. The sets of 23512 linear parametersai j l

(1) andai j l
(2) as

well as a FORTRAN code can be obtained from one of
authors~R.S.!.

The calculated equilibrium structure agrees favora
with the experimental one~Table I!. The dissociation energy
D0(HO–Cl) is also in good agreement with the experimen
value. Including spin–orbit coupling in the calculation
would decrease the dissociation energy and thereby fur
improve the calculated value. The deviations in the fun
mental transition frequencies are 9, 7, and 2 cm21 for modes
1, 2, and 3, respectively; (n1 , n2 , andn3 are the HO stretch-
ing, the bending, and the OCl stretching mode, respective!
One of the goals of our study of HOCl is the decay of t
overtone states~6,0,0! and ~7,0,0!, for which experimental
results are available.26–28 Although a deviation of only 9
cm21 for the HO fundamental frequency is very satisfacto
the deviations for the higher overtones seem to be unacc
able. In order to further improve the agreement, we sligh
scaled the two bond distances, i.e.,x→ex with e50.996 for
the HO bond and 0.998 for the OCl bond distance. While
original PESoverestimatesthe HO stretching frequency by

TABLE II. Comparison of calculated and observed vibrational band orig
(cm21).

(v1 ,v2 ,v3) Theory Experiment Expt’l. Ref.

0 0 0 0 0
0 0 1 724.6 724.36 51
0 1 0 1238.3 1238.62 51
0 2 0 2458.2 2461.21 52
1 0 0 3602.2 3609.48 50
1 0 1 4323.8 4331.91 53
1 1 0 4813.8 4820.43 53
1 2 0 6003.3 6013.83 53
2 0 0 7036.7 7049.81 54
3 0 0 10 307.7 10 322.29 53
3 1 0 11 463.2 11 478.01 55
3 2 0 12 593.2 12 612.55 24
4 0 0 13 416.9 13 427.39 56
4 1 0 14 535.4 14 555.60 56
5 0 0 16 359.1 16 364.75 56
6 0 0 19 125.4 19 122.80 Cited in Ref. 29
7 0 0 21 715.6 21 709.07 27

TABLE I. Equilibrium geometries~Å and deg.!, dissociation energies
(cm21), and fundamental transition frequencies (cm21).

Original PES Scaled PES Experiment

RHO
e 0.964 0.967 0.9644a

ROCl
e 1.694 1.702 1.6890a

ae 102.2 102.2 102.96a

De(HO-Cl) 20 366.6 20 366.6 —
D0(HO-Cl) 19 347.3 19 349.9 19 290.3b

n1 3618.3 3602.2 3609.48c

n2 1245.9 1238.3 1238.62d

n3 726.0 724.6 724.36d

aThe experimental equilibrium structure was taken from Refs. 48 and 4
bReference 28.
cReference 50.
dReference 51.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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cm21, the scaled PESunderestimatesit by 7 cm21. How-
ever, the scaling factor is chosen so that the disagreem
with the experimental energies is small forall states of the
(v1,0,0) progression withv151 through 7~see Table II!.
The other two transition frequencies obtained with the sca
PES are in very good agreement with experiment. The s
ing slightly modifies also the equilibrium bond distance
This could be corrected for by a tiny translation of the tw
stretch coordinates, which, however, has not been done
dynamics calculations, which will be presented in the follo
ing, are performed with the scaled PES.

In Table II we compare vibrational band origins wi
available experimental data. The agreement is satisfac
with the largest deviation being 20 cm21 and a rms deviation
of 11 cm21.

There are two other PESs available for HOCl, whi
have been constructed very recently. Peterson57 determined a
near-equilibrium PES based on high quality coupled clus
ab initio calculations. With this PES the experimenta
known overtones and combination bands up to energie
about 10 000 cm21 were accurately reproduced. Howeve
because this PES is restricted to configurations not too
from equilibrium, it cannot be used for studying the fra
mentation into HO and Cl. Similarab initio calculations on
an even higher level of accuracy were subsequently
formed by Koput and Peterson.58 Skokov, Peterson, an
Bowman29 extended the calculations of Peterson and c
structed a global PES, which is suited to study high ov
tones of the HO stretching mode as well as dissociation
HO1Cl. The ab initio level is comparable to the level o
accuracy used in our calculations. Skokov, Peterson,
Bowman, however, performed a more elaborate scaling
cedure and therefore their PES reproduces the experim
tally known vibrational energies slightly better than our s
face. The general topographies of the two potential surfa
are very similar.

Figure 1 depicts three two-dimensional cuts through
PES. The coordinates are the Jacobi coordinates approp
for dissociation into HO and Cl:R, the distance from Cl to
the center of mass of HO,r, the HO bond distance, andg,
the angle between the two vectorsR and r (g5180° corre-
sponds to linear HOCl!. The two dissociation channels
HO1Cl (R→`) and H1OCl (r→`), are clearly seen in
Fig. 1 ~middle panel!. However, the latter one is conside
ably higher in energy and therefore is of no consequence
our study. There is no barrier in the HO1Cl exit channel
~Fig. 2!. In the linear geometry,g5180°, two pronounced
maxima exist, which are caused by conical intersections w
higher electronic states.29 The first one occurs nearR'4a0

@Fig. 1 ~upper panel!# and the second one is located at lar
HO distances@Fig. 1 ~lower panel!#.

The main characteristic of the HOCl ground-state PES
the weak potential coupling between the three internal
grees of freedom. The minimum energy paths are alm
perfectly aligned along the respective coordinate axes.
low energies the same is true for the nodal lines of the qu
tum mechanical wave functions. At higher energies, ho
ever, an anharmonic resonance betweenR and g is devel-
oped, which strongly changes this simple picture.
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
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III. CALCULATION OF BOUND AND RESONANCE
STATES

All dynamics calculations are performed using the filt
diagonalization method.59–61 In a first step, optimally
adapted basis functions~so-called ’window basis functions’!

FIG. 1. Contour plots of the HOCl ground-state PES. The contour spacin
0.25 eV and the highest energy in each panel is 3 eV. Energy normaliza
is such thatE50 corresponds to HO1Cl with HO at equilibrium.

FIG. 2. Minimum energy path along the dissociation coordinateR; the po-
tential is minimized in the other two degrees of freedom. The symb
indicate the extension of wave functions in the two progressions (0,0v3)
and (0,0,x)D , respectively~see the text!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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C i , which span only a relatively small subspace of t
whole Hilbert space, are generated by applying the Gree
function

Ĝ1~Ei !5~Ei2Ĥ1 iW!21 ~9!

as a filtering operator onto an initial wave packetx,

C i5Im Ĝ1~Ei !x, ~10!

where iW is a complex absorbing potential (W50 for
bound-states calculations!. The energiesEi are taken to be
equally spaced in the interval@Emin ,Emax#. The filtering is
efficiently performed using the~modified! Chebychev poly-
nomial expansion of the Green’s function.60–64In the second
step the eigenstates in the energy window@Emin ,Emax# are
calculated by diagonalizing the Hamiltonian in the small
of basis functionsC i .

Because the window basis functions are explicitly sto
in the core memory of the computer, it is necessary to ca
fully choose the size of the energy windows@Emin ,Emax#. As
a rule of thumb, the number of basis functions for a parti
lar interval should be roughly twice the number of eige
states as estimated from the expected density of states in
window. In the present case we have calculated all the
bound states supported by our PES in 13 overlapping en
windows, where we tried to keep the number of eigensta
per window roughly constant. While the lowest energy w
dow ranged from22.2 to 21.3 eV, the highest window
covered an energy region of only 0.03 eV. None of the c
culations needed more than 300 Mbytes of main memor

For the highest lying energy window the thre
dimensional grid was chosen to extend from 2.5a0 to 10.0a0

in R with 150 potential-optimized points,65 from 1.0a0 to
3.5a0 in r with 30 potential-optimized points, and from 0° t
180° in the angular coordinate with 70 Gauss–Legen
quadrature points.66 The grid size ofN5315 000 points has
been further reduced toN5197 000 points by discarding a
points with potential energies larger than 1.8 eV. We fou
that 60 000 Chebychev iterations were sufficient for conve
ing even the highest bound states of HOCl.

The calculation of the complex resonance energ
above the HO1Cl dissociation threshold has been perform
by adding an imaginary~absorbing! potential67–69 iW to the
Hamiltonian@see Eq.~9!#.60,61,63,64It enters the filtering pro-
cedure in the form of a damping operator exp@2ĝ(R)#. Fol-
lowing Mandelshtam and Taylor, the coordinate depend
function ĝ(R) is assumed to have the form60,61,63

ĝ~R!5
D0

~DH !1/2S R2Rdamp

Rmax2Rdamp
D 2

Q~R2Rdamp!. ~11!

Here,DH ~in atomic units! andQ denote the spectral rang
of the Hamiltonian and the Heaviside step function, resp
tively. The three adjustable parameters are the damp
strength,D0 , the starting point for the absorbing potentia
Rdamp, and the end point of the grid in the dissociation c
ordinate,Rmax. The relationship betweenĝ andW is explic-
itly given in Ref. 64. After many test calculations we foun
the following parameters to give tolerable resonance wid
Rmax514a0 , Rdamp512a0 , andD050.1. Because the grid i
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
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significantly extended in theR direction as compared to th
bound-states calculations, the number of grid points in
dissociation coordinate is increased to 220. In addition,
observed that an unexpectedly high number of Chebyc
iterations~180 000! is required for converging the resonan
widths of states having substantial excitation in the H
stretching mode.

IV. CHARACTERIZATION OF BOUND STATES

We have calculated all the bound states up to
HO1Cl dissociation threshold—827 on our PES—and
have visually inspected each of them in order to recogn
how the structure of the spectrum changes with energy.@A
list of all bound state energies and assignments is avail
electronically70 or can be obtained from one of the autho
~R.S.!.# The inspection ‘‘by eye’’ is indispensable, we be
lieve, for making the correct assignment. The energy le
spectrum of HOCl is simple and the assignment of the vib
tional states is straightforward up to about four-fifths of t
dissociation limit. Then, however, complications related to
saddle-node bifurcation of the corresponding classical ph
space occur, which make the interpretation considera
more complicated. We will first discuss the low-energy r
gime and subsequently focus on the changes happenin
higher energies. The coupling between the HO stretch
mode and the other two degrees of freedom is very weak
that it is justified to analyze the manifolds for different va
ues ofv1 separately.

A. Polyad structure for v 150 in the low-energy
regime

At low energies all states can be clearly assigned
terms of quantum numbers (v1 ,v2 ,v3). The wave functions
of the pure overtone states (v1,0,0), (0,v2,0), and (0,0,v3)
are basically aligned along the HO stretch coordinater, the
angular coordinateg, and the dissociation coordinateR, re-
spectively. The fundamental OCl frequency is slightly larg
than half of the fundamental bending frequency, that is,
spectrum is governed by an approximate 1:2 anharmo
resonance: Two quanta of OCl stretch are roughly worth
quantum of the bending mode. As a consequence, the s
trum is organized, for a given HO quantum numberv1 , in
polyads denoted byvv1 ,Pb . The polyad quantum number i
defined by P52v21v3 . Figure 3 illustrates the polyad
structure of the energy levels forv150 in the range of poly-
adsv0,19b throughv0,30b . The spectra with excitation of the
HO stretching coordinate are virtually replicas of thev150
spectrum, roughly shifted by one, two, etc., HO vibration
quanta to higher energies~see the following!. The number of
states in each polyad is (P12)/2 for even values ofP and
(P11)/2 for odd polyad quantum numbers. Already at lo
energies the polyads significantly overlap. The OCl stret
ing states (0,0,P) are always at the top of each polya
whereas — up to polyadv0,27b — the bending overtones
(0,v2,0) or (0,v2,1) demarcate the lower end. Around th
energy of20.5 eV structural changes occur, which are d
cussed in detail in Sec. IV B.

In order to illustrate the general behavior of wave fun
tions in the low-energy regime, we depict in Fig. 4 the wa
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 3. Energy level spectrum in the region of polyad
v0,19b –v0,30b . The dissociation states (0,v2 ,x)D(P) are
indicated by dashed lines.
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functions for all states of thev0,12b polyad. We plot them in
the (R,g) plane because of the resonance between the b
ing and the OCl stretching degrees of freedom. The labe
with quantum numbers is straightforward: They specify
number of nodes along the three coordinate axes. Becau
the relatively large mismatch of more than 100 cm21 be-
tweenn2/2 andn3 , the mixing betweenR andg is not well
developed in the lower energy region and the wave functi
do not show the general structure characteristic for a
resonance.8,71 The backbones of the wave functions for sta
(0,P/2,0) and (0,0,P) are almost perpendicular to eac
other.

However, being the dissociation mode, the OCl stretc
much more anharmonic than the bend. Therefore, the m
match between the corresponding transition frequen
gradually decreases and the resonance condition beco
better and better fulfilled, as it is seen in Fig. 5~c!, where we
show for the two progressions (0,0,P) and (0,P/2,0) the
energy gap between adjacent levels as functions of ene
The transition frequencies of the bending mode are divi
by two. The two frequency curves come very close to e
other nearP'16 and remain close untilP'25. The more
and more exact resonance leads to an increasing mixing
tween theR and theg motions, at least for the states at th
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upper ends of the polyads. For example, the (0,0,P) wave
functions become gradually more curved in the (R,g) plane
as illustrated in the left-hand panel of Fig. 6. The curvature
already present for polyadP512 ~Fig. 4!, but it becomes
clearly pronounced not untilP is larger than 16 or so. This
horseshoe-type behavior is typical for systems governed
1:2 resonance.8 As a consequence of the mixing, the stat
which at low energies start out to advance along the dis
ciation coordinate,ROCl , at high energies avoid the dissoci
tion path. This is illustrated in Fig. 2, where we plot th
value of the dissociation coordinate,Rmax, at which the
(0,0,P) wave functions have their outermost maximum, ve
sus energy.Rmax first increases withP, reaches a maximum
aroundP'17– 18, and then again decreases slightly. As w
be discussed in Sec. V, the backbones of the (0,0,P) wave
functions are scarred by a stable classical periodic orbit~PO!.
Because of the strong mixing, referring to the (0,0,P) states
as ‘‘OCl stretching states’’ is meaningless, except in the lo
energy regime. The quantum numberv3 denotes the numbe
of nodes along the corresponding PO, rather than along thR
axis. In contrast, the wave functions of the states at the
tom of the polyads, (0,P/2,0), retain their general shap
from low to very high energies. They do not show the b
havior representative for a 1:2 resonance. Their backbo
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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are also scarred by a stable PO~see the following!.
A quantity, which to some extent reflects the degree

mixing, is the energy spacing between adjacent levels in
the polyads. In Fig. 7 we depictDE5En

P2En21
P as function

of n for various polyadsP; the indexn specifies the state
inside the polyad withn50 being the lowest state. In th
low-P region, DE is a smooth, monotonically decreasin
function with its minimum value at the top of the polya
BetweenP516 and 18, however, the energy spacing cu
loses its monotonic behavior.

B. Genesis of dissociation states

The increasing coupling betweenR andg with increas-
ing energy and the resulting mixing leads — above poly
v0,21b — to a gradual distortion of the simple appearances
the wave functions observed for the lower polyads. This d

FIG. 4. Wave functions for polyadP512. Theg axis ranges from 19° to
179° and theR axis ranges from 2.5a0 to 5.42a0 . All wave function plots
depicted in this article, if not stated otherwise, have been obtained fro
plotting routine which allows one to rotate 3D objects in space. Show
one particular contoure(R,r ,g)5uC(R,r ,gu2 with the value ofe being the
same in each figure. The plots are viewed along one coordinate axis, i
direction perpendicular to the plane of the other two coordinates. Sha
emphasizes the 3D character of the wave functions. The potential is sh
in the upper left-hand panel. The numbers are the energies of the respe
quantum states.
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tortion is most pronounced for the states in the middle of
polyads, whereas the states near the bottom or the top
polyad still can be characterized and assigned in the s
manner as for the lower polyads. Figure 8 illustrates th
changes in the wave function character for selected st
belonging to polyadsv0,21b through v0,25b . The way in
which the assignment is done, i.e., the ‘‘axes’’ along whi
the number of nodesv2 andv3 are counted, is illustrated by
the arrows in some of the panels.

The wave function for state~0,7,8! in polyadv0,22b still
has a structure, which matches the behavior of the w
functions in the lower polyads and its assignment is qu

a
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FIG. 5. ~a!–~c! Energy difference between adjacent states of the pure p
gressions (v1,0,v3), (v1 ,v2,0), and (v1,0,x)D~P! as function of energy for
v150,1, and 2. The inset in~c! shows an enlargement of the ‘‘crossin
region.’’ ~d! Frequencies of the classical periodic orbits belonging to vario
families. Solid lines indicate stable POs and dashed lines represent uns
ones. The branches, which influence the quantum mechanical states
indicated by the thicker solid lines. The frequencies of the (0,v2,0) states

and, likewise, the frequencies of the@g#-, @ g̃#-, and @g1#-type POs are
divided by two. See the text for more details.
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clear. The appearance of the wave functions for the n
three higher states, however, is more involved, especially
state~0,6,10!. Making the same plot with a lower contou
level shows a slightly different nodal structure and in p
ticular reveals that the assignment as~0,6,10! can still be
justified. Nevertheless, the general appearance of the~0,6,10!
wave function is different from that for state~0,7,8!: There is
a central ‘‘backbone’’ along which the amplitude is max
mal. Such a backbone is missing for~0,7,8!. The wave func-
tions for the higher states in this polyad,~0,5,12!, ~0,4,14!,
etc., have shapes, which resemble the nodal structures kn
from the states in the lower polyads.

The particular shape of the~0,6,10! wave function be-
comes more evident in the higher polyads: See, e.g.,
wave functions for state~0,7,9! for P523, ~0,8,8! for P
524, and~0,9,7! for P525. While the wave functions fo
states~0,6,10! and ~0,7,9! still show amplitude off the main
backbone, the wave functions for states~0,8,8! and ~0,9,7!
are much more distinct, i.e., the amplitude outside the reg
of the backbone is marginally small.

The assignment of the fifth (n54) state in polyadP
523 as ~0,7,9! is nonetheless justified: Plotting the wav

FIG. 6. Wave functions of the pure overtone states (0,0,P) ~left-hand col-
umn! and the dissociation states (0,0,x)D~P! ~right-hand column!. For further
details see Fig. 4.
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function at a lower contour level reveals that it has 7 an
nodes, respectively, along thev2 andv3 ‘‘axes,’’ which are
indicated in Fig. 8. On the other hand, the assignments of
n54 state ofP524 and then52 state in polyadP525 as
~0,8,8! and ~0,9,7!, respectively, are not at all reasonab
The labels~0,8,8! and ~0,9,7! merely indicate that at thes
positions states with these assignments are expected. H
ever, such states are missing and their positions are occu
by these new states. In order to distinguish the ‘‘new’’ sta
from the ‘‘normal’’ ones, we will assign them a
(v1 ,v2 ,x)D~P! , where the abbreviation D stands for ‘‘disso
ciation’’ and the number in parentheses indicates the pol
this state belongs to. With increasing polyad quantum nu
ber combination states of the D type with one, two, and m
nodes in the direction perpendicular to the main backbo
i.e., with excitation essentially in the bending mode, co
into existence, e.g., state~0,8,9! for polyadP525.

The number of nodes along the backbones of these fu
tions is not identical to the polyad quantum numberP. For
example, the (0,0,x)D~24! wave function for polyadP524
has only 19 nodes.~It, beyond any doubt, is not a member
polyadP519.! Because of the mismatch between the poly
quantum numberP and the actual number of nodes along t
backbone, we replace the quantum numberv3 by x without
specifying the value ofx. As before,v1 is the number of HO
stretching quanta andv2 refers to the number of quanta i

FIG. 7. Energy spacings between neighboring states inside the pol
v0,14b –v0,28b as function ofn, wheren indicates the position in the polyad
(n50 for the lowest state!.
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FIG. 8. Selected wave functions fo
polyadsv0,21b –v0,25b illustrating the
gradual distortion of the nodal behav
ior observed for the lower polyads an
the genesis of the (v1 ,v2 ,x)D~P! disso-
ciation states. For further details se
Fig. 4.
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the direction perpendicular to the backbone, basically
angular coordinate. There is another peculiarity. The num
of nodes of the D states along their backbones does not
essarily increase by one when going from one polyad to
next higher one. For example, the wave functions for sta
(0,0,x)D~24! and (0,0,x)D~25! both have 19 nodes. Moreover,
is possible that the number of nodes along the backbone
identical for states (0,0,x)D~P! and (0,1,x)D~P! . The allocation
to a particular polyad is only possible by carefully followin
how the spectrum and the wave functions develop from
energies to high energies and this requires one to ins
each wave function state by state.

The D states clearly follow the dissociation path, i
they extend further and further into the HO1Cl fragment
channel when the energy increases~Fig. 2 and the right-hand
panel of Fig. 6!. They form a new family of states, whic
does not exist at lower energies, but comes into existe
abruptly at high energies. As we will show in Sec. V, the
states can be interpreted as the consequence of a saddle
bifurcation of the classical phase space. Details of the qu
tum mechanical/classical correspondence will beco
clearer in the two-dimensional study.33 The birth of the D
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states leaves the number of states per polyad intact; it is
structure of the individual polyads, i.e., the wave functio
and the energy spacings between neighboring states~see the
following!, that is considerably changed by the D states. T
alterations become rapidly more severe with increasing
ergy.

The evolution of the wave functions as illustrated in F
8 continues at higher polyads, namely some of the ‘‘norma
states, which are well assignable in the lower polyads,
appear and at the same time new D states are born. Sinc
D states advance along the dissociation path, they sho
considerable anharmonicity as indicated by the energy le
spacing between adjacent (0,0,x)D~P! states in Fig. 5~c!. The
curve of transition frequencies for the D states seems to
the continuation of the curve for the (0,0,v3) states, i.e., the
states which in the low energy regime have mainly O
stretching character. The extrapolation of the (0,0,x)D~P!

curve to lower energies merges with the (0,0,v3) frequency
curve aroundP'16– 17 (E'20.9 eV!, just in the region
where the frequency curves for the states (0,0,v3) and
(0,v2,0) intersect each other, i.e., where the two transit
frequencies are almost identical.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 9. All wave functions for polyad
v0,30b . For further details see Fig. 4.
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The energy-level spectrum of HOCl becomes quite co
plex in the high-polyad regime. When the D states come i
existence aroundP523– 24, they are born in the middle o
the respective polyads. However, because of the large an
monicity, they quickly move to the lower ends~Fig. 3!. In
polyadv0,28b it happens for the first time that an (0,0,x)D~P!

state is the lowest state in a polyad. From there on, more
more states with D character and several quanta in the b
ing mode appear at the lower parts of the polyads. That
upper end of a polyad overlaps with the lower part of t
next higher polyad does happen even at low energies, w
D states do not yet exist. However, in the high-P regime it
occurs that several polyads overlap. For example, the u
part of polyadP528 overlaps with states from polyads 2
and 30. This makes the analysis of the energy level spect
cumbersome, especially if the wave functions are not av
able.

The problems related to the assignment rapidly grow
one approaches the dissociation limit. Actually, poly
v0,31b is the last one forv150 that can be completely as
signed. The number of unassignable states quickly g
larger for energiesE.0. In order to demonstrate the com
plexity of the wave functions at high energies we show
Fig. 9 all wave functions for polyadv0,30b . The three lowest
states are clear-cut D states of the form (0,v2 ,x)D~30! . They
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are followed by a region in which D states and bending sta
alternate. The states in the middle of the polyad have
extremely complex nodal structure, whereas the top of
polyad again is governed by levels, which have the sa
general behavior as observed in the lower polyads and
assignment is rather clear. The highest state,~0,0,30!, has
mainly bending character, although the lowest members
this progression started out to have excitation along the O
stretching degree of freedom.

There is a further detail worth mentioning. The~0,15,0!
wave function has a clear node along theR coordinate, which
is in contradiction to the general building principle of th
polyads, i.e., the wave functions for the states (0,v2,0) have
no node in theR direction. Again, this effect has a counte
part in the analysis of the classical phase space: At a per
doubling bifurcation of the bending family of POs the P
describing pure motion ing becomes unstable and a ne
stable PO is created~see Sec. V!. The latter one has the form
of a very narrow horseshoe and it is this PO which scars
(0,v2,0) wave functions. The same effect also occurs in
2D calculations and is even more clearly conceivable ther33

The emergence of the D states has a profound impac
the energy spacings inside the polyads~Fig. 7!. While DE is
a smooth and monotonically decreasing function in
low-P region, betweenP516 and 18 a very shallow mini
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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mum develops in the top part of the polyads. With increas
polyad quantum number this minimum becomes more p
nounced and gradually shifts toward the bottom of
polyad. The location of the minimum in the intrapolyad e
ergy spacing is closely related to the (0,0,x)D~P! states. For
example, forP522 the minimum is atn56 and the D state
in this polyad is the sixth state; forP524 the D state is the
fifth state of this polyad and the minimum occurs atn54. As
P increases the D states rapidly move to the bottom par
the polyads and so does the minimum in the intrapoly
energy spacing. The ‘‘fluctuations’’ for the higher polyad
P526 for example, are the consequence of the occurrenc
more than one D state and their alternation with the ‘‘n
mal’’ states~Fig. 9!.

The minimum begins to develop in polyadsP516– 18.
This is exactly the region in which the mixing betweeng and
R at the top of the polyads gets large because of the alm
perfect degeneracy~see Fig. 5!. As previously discussed, thi
is also the region in which the D states begin to come i
existence. States with a clear-cut ‘‘dissociation’’ behavior
not show up beforeP521. However, an extrapolation of th
(0,0,x)D~P! frequency curve to lower polyads suggests t
first indications already occur as early asP'16– 18. In other
words, the intrapolyad energy spacing is a very sensi
probe of the saddle-node bifurcation through which the
states are born. The relation between a minimum in the
trapolyad energy spacing and saddle-node bifurcations
been previously discussed by Svitacet al.72 for a model reso-
nance Hamiltonian and by Joyeuxet al.73 for HCP. It is in-
teresting to note that well below the resonance region,DE is
a monotonically decreasing function ofn, while in the higher
polyads, when the resonance behavior is fully developed,DE
monotonically rises withn, except for the fluctuations at th
bottom of the polyad. A detailed analysis is given in Ref. 3

C. Polyad structure for v 1>0

Up to now we have only discussed the polyad struct
for states in which the HO moiety is not excited,v150.
Because of the weak potential coupling betweenr on one
hand andR andg on the other, and because of the relative
large mismatch of the fundamental frequencies,n1 /n2

'n1/2n3'3, the HO stretching motion is to a large degr
separated from the motions inR and g. As a consequence
the polyad structures forv151 and 2 are almost replicas o
the spectrum forv150, merely shifted by the correspondin
excitation energies. This general behavior is, for exam
confirmed by the frequency curves forv151 and 2 in Fig. 5.
The point of intersection of the curves for the two progre
sions (1,0,v3) and (1,v2,0) is shifted by about 4600 cm21 to
higher energies with respect to the curves withv150. As a
result, the D states occur at energies very close to the di
ciation threshold. The point of intersection is further shift
to higher energies for two quanta of excitation of the H
mode; D states withv152 occur only in the continuum. The
weak coupling between HO stretching motion and the ot
two degrees of freedom~together with the fact thatn1
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@n2,3) is responsible for the success of the two-dimensio
model in reproducing — and explaining — the results of t
present three-dimensional study.33

Although the coupling betweenr, on the one hand, andR
andg, on the other, is weak, it is not negligible. This can
seen in Fig. 10, where we depict the wave functions
states~0,8,0!, ~1,8,0!, and ~2,8,0! in the (r ,g) plane. The
wave function for state~0,8,0! shows an undulatory behav
ior, which is characteristic for a 3:1 resonance system,6 i.e.,
one quantum of HO stretch is worth three quanta of
bending mode. As will be discussed in the Sec. V, the p
cise shape of the (0,v2,0) wave functions in the (r ,g) plane
is helpful in finding those periodic orbits which correspo
to the quantum wave functions. The wave functions for
states with excitation inr show a different behavior; they ar
slightly bent without the characteristic 3:1 resonance beh
ior.

V. ANALYSIS OF THE CLASSICAL PHASE SPACE

The structure of the quantum mechanical spectrum
particularly the shapes of the wave functions can be elu
dated in terms of the structure of the classical phase sp
and special trajectories therein, so-called periodic orb
~POs!.18,74POs are classified as stable or unstable depen
on the eigenvalues of the monodromy matrix.15 For many
systems it has been demonstrated that the ‘‘backbones
quantum mechanical wave functions closely follow certa
stable POs.75 HOCl is a particularly illuminating system fo
illustrating the close correspondence between the ph
space structure and the quantum mechanical spectrum, a
way from the bottom of the potential well to the dissociati
threshold.

Despite the remarkable simplicity of the quantum m
chanical spectrum up to high energies, the structure of
classical phase space is quite involved already at low e
gies. Near the bottom of the well there are three types
POs, the principal families. They are denoted by@r#, @g#,
and@R#, respectively, because the POs basically describe
tions along the three coordinate axes. Instead of show

FIG. 10. Examples of (v1 ,v2,0) wave functions in the (r ,g) plane. Theg
axis ranges from 1° to 179° and ther axis ranges from 1.0a0 to 3.5a0 .
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 11. Comparison of selected POs and the cor
sponding wave functions~two-dimensional contour
plots; the third coordinate is integrated over!. ~a!, ~b!

The solid ~dashed! lines represent orbits of the@ g̃#
(@g#) type; ~c!, ~d! the solid ~dashed! lines represent

orbits of the@R̃# ~@R#! type; ~e! the solid line represents
an orbit of the@D# type; ~f! the solid line shows an orbit
of the @g1# type.
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individual POs we present in Fig. 5~d! the corresponding
frequencies as functions of the energy~continuation/
bifurcation diagram76!. In order to simplify the presentation
the frequency for the@r# family is not shown. In accordanc
with the quantum mechanical results in Figs. 5~a!–5~c! the
frequencies of the@g#-type orbits are divided by two. All
classical curves are shifted by 0.23 eV, the estimated qu
tum mechanical zero-point energy in the HO stretching m
at the equilibrium configuration, to higher energies.77 Repre-
sentative examples of POs and the corresponding wave f
tions are depicted in Fig. 11.

The @r#-type POs~not shown! exist up to very high en-
ergies, far above threshold, and they are stable for the e
energy regime studied. The general structure of these o
does not change as energy increases. The behavior o
POs of the other two principal families, however, is mo
involved.

In contrast to the@r# orbits, the@g#-type POs very early
change their qualitative morphology: As energy increases
HO mode becomes excited, as is seen in Fig. 11~b! ~the
dashed line!, and the degree of excitation grows withE.
These changes start around21.95 eV~including the 0.23 eV
shift to higher energies! and are the consequence of the 3
resonance between the HO mode and the bending m
This resonance has only a small effect on the quantum
chanical wave functions, but seems to influence the class
trajectories more strongly. However, although the@g# family
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of POs remains stable up to energies well above the di
ciation threshold and although they seem to follow the ba
bone of the (0,v2,0) wave functions in the (R,g) plane@Fig.
11~a!#, they do not scar the (0,v2,0) wave functions: The
behavior of the wave functions in the (r ,g) plane @Fig.
11~b!# is not properly described by the@g#-type POs.

In the same energy range, where the@g#-type POs
change their structure (21.95 eV!, the first saddle-node~SN!
bifurcation is found. The stable branch of this bifurcatio

which is denoted by@ g̃# in what follows, has POs with smal
excitation along ther coordinate — for low energies as we
as for high energies. As Figs. 11~a! and 11~b! indicate, it is

the POs of the@ g̃# family which scar the (0,v2,0) wave

functions. The@ g̃# POs are stable up to about20.4 eV,
where a period-doubling bifurcation occurs. At this bifurc

tion the @ g̃# branch becomes unstable and the new bran
labeled by@g1#, is stable, at least initially. At still higher
energies this branch goes through several additional bifu
tions and eventually also loses its stability.

As previously mentioned, the pure bending wave fun
tions (0,v2,0) change their shapes at high energies, i.e., w
v2 is larger than 13 or so. While at lower energies t
(0,v2,0) wave functions do not have a node in theR direc-
tion, in the high-energy regime they develop excitation inR
@Fig. 11~f!#. The structural change of the wave functions
reflected by the change of the slope of t
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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(0,v2,0)-frequency curve near20.25 eV in Fig. 5~c!. The
high-energy (0,v2,0) wave functions are scarred by the PO
of the @g1# branch, which have the shape of a very narr
horseshoe@Fig. 11~f!#. Because of the splitting into two
branches, the period of the@g1# orbits is about two times

longer than the period of the@ g̃#-type POs~period-doubling
bifurcation!; accordingly, the frequency is lowered by a fa
tor of 2. ~Actually, in order to compare with the correspon
ing quantum mechanical frequency curve, the frequency
the @g1#-type orbits should be multiplied by two.! The
horseshoe becomes increasingly wider with increasing
ergy. At still higher energies these POs also become
stable, which explains why no clear-cut (0,v2,0) wave func-
tions exist above 0 eV or so.

The POs of the@R#-type principal family are also stabl
up to very high energies. However, there is a sudden cha
of the frequency around21.4 eV and at the same time
change of the character of these orbits. While below21.4
eV the @R#-type orbits have no significant excitation inr,
above this energy they show substantial excitation in the
stretching mode@see Fig. 11~d! ~dashed lines!#, which grows
with energy. A careful analysis of the eigenvalues of t
monodromy matrix shows that the POs belonging to the
apparently different parts of the frequency curve are me
bers of the same family. The@R#-type orbits change abruptl
their character. The cause of this transition is the alm
exact 1:6 resonance between ther coordinate, which was
basically unexcited up to this energy, andR. Above21.4 eV
the additional energy is to a large extent channeled intr
motion, while the energy contained inR increases only
slightly. Figures 11~c! and 11~d! clearly show that the
(0,0,v3) wave functions do not follow the@R#-type POs.

At the energy, where the resonance betweenR andr sets
in, a second SN bifurcation emanates, the stable branc

which will be denoted by@R̃# in what follows. The orbits
belonging to this manifold have the same character as
POs of the@R# family below the SN bifurcation. In particu
lar, they do not have substantial excitation inr and therefore
are believed to scar the wave functions of the (0,0,v3) pro-

gression@Figs. 11~c! and 11~d!#. The@R̃# branch is stable up
to the highest energy considered. It seems to be the h
energy continuation of the low-energy branch of the@R# fam-
ily.

The sudden change of the frequency of the@R# family

and the occurrence of the SN bifurcation, at which the@R̃#
orbits are born, is to some extent replicated at higher e
gies: There is a whole cascade of SN bifurcations. The c
responding trajectories will be denoted by@D1#, @D2#, etc.
All frequency curves of the@Di # families have a similar
pattern, that is, a short branch with large anharmonic
which appears to be the extrapolation of the low-energy s
ment of the@R# family, and a second part, for which th
slope is smaller, approximately the same as for the@r# fam-
ily. The trajectories belonging to the first branch are stab
have no excitation inr, and scar the (0,0,x)D~P! wave func-
tions, which is the reason why we term them@Di # orbits. On
the other hand, the trajectories belonging to the second
ments are mainly unstable, show considerable excitation
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the HO mode, and therefore do not guide the (0,0,x)D~P!

wave functions, which do not show excitation along ther
coordinate. It is plausible to assume that the abrupt chang
the @R# frequency and the corresponding changeover of
morphology of the orbits at the SN bifurcation near21.4
eV, on the one hand, and the changes of the@Di # frequency
curves and the change of the character of the@Di #-type tra-
jectories, on the other, have the same origin, namely
resonance betweenr andR. While the former SN bifurcation
is the result of a 6:1 resonance, the SN bifurcations of
@Di # families are caused by 8:1, 9:1 resonances, etc., as
analysis of the unstable trajectories in the (R,r ) plane indi-
cates.

It is not surprising that the families of periodic orbit
which are associated with excitation inr, appear at energie
at which ther mode tunes into resonance with the other tw
modes. Of course, a mode which is almost separated f
the other two modes classically can be excited at any ene
— one simply has to put some amount of energy intor,
where it will stay because of the separability. However,
resulting trajectories would be only quasiperiodic rather th
fully periodic. A given trajectory is periodic if the number o
cycles in the~separable! moder is a multiple of the number
of cycles in the (R,g) plane and this means that ther mode
is in resonance with the other two modes. This explains w
the @R# and @Di # families have SN bifurcations at specifi
energies. The amount of energy put into ther mode along
these special periodic orbits does not correspond to
quantum of HO stretch vibration and therefore quantum m
chanics totally ignores these bifurcated branches. A sim
situation was previously discussed in Ref. 73 in connect
with the PO analysis of HCP.

The classical continuation/bifurcation diagram loo
much more complicated than its quantum mechanical co
terpart in Fig. 5~c!. If only those branches, which apparent
correspond to the quantum mechanical curves@highlighted
by thicker lines in Fig. 5~d!#, were drawn, the analogy be
tween Figs. 5~c! and 5~d! would be more evident. Neverthe
less, we also show those branches, which do not affect
quantum mechanical wave functions of the overtone sta
because they are the high-energy continuations of those
ments which at lower energies do influence the quantum
chanical states. All of these branches have one featur
common, i.e., significant excitation of the HO mode. As
result of this, their anharmonicities are similar to that of t
@r# branch. The continuation/bifurcation diagram obtained
the 2D model, in which the HO vibration isadiabatically
decoupled, is much simpler and resembles very closely
corresponding quantum mechanical picture.33

In previous applications of PO analysis to molecu
systems18,78,79we observed SN bifurcations to occur main
near energies, where the topography of the potential chan
drastically, e.g., near a barrier~HCN80! or a ‘‘kink’’
~HCP12!. In these cases, the principal families continue
exist with the corresponding POs gradually changing th
morphologies; the new regions of phase space, which
come accessible, are explored by the POs of the SN fami
HCP is a well-understood example.13 The situation is differ-
ent for HOCl. First, the PES does not have a characteri
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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feature like a barrier, at least not in the energy regime stud
in the present investigation, which underlines that SN bif
cations do not require drastic changes of the PES. Secon
the SN bifurcation the POs of the principal families chan
drastically by penetrating into a new dimension~r! and the
emerging SN orbits explore those regions of phase sp
which before the SN bifurcation are sampled by the princi
families. A more detailed analysis of this development w
be published at a later date by investigating a tw
dimensional model~coordinatesR and g), in which r is
treated as a second control parameter in addition toE.

VI. UNIMOLECULAR DISSOCIATION

In Secs. IV and V we analyzed the evolution of th
bound states up to the dissociation threshold and sho
how they are affected by SN bifurcations of the classi
phase space. In this section we will discuss the implicati
of the bound-state structure for the fragmentation above
HO1Cl threshold. The link between spectroscopy, on
one hand, and kinetics~i.e., unimolecular dissociation!, on
the other, are resonances, that is, quasibound states in
dissociation continuum. In scattering theory, resonan
emerge as poles of theS matrix.81 In our calculations, based
on Feschbach’s optical model, resonances are approxim
by the eigenvectors of a complex-symmetric Hamilton
~see Sec. III!. This Hamiltonian differs from the one used
the bound-state calculations by an imaginary absorbing
tential term. As such, each resonance is uniquely chara
ized by a complex wave function and a complex eigen
ergy,E02 iG/2. The real part determines the position of t
resonance on the energy axis~in what followsE0 is the en-
ergy in excess of the dissociation threshold!, and the imagi-
nary part gives the resonance width. The resonance lifet
is given byt5\/G, and the dissociation rate is defined
k5t21.

An overview of the dissociation dynamics of HOCl wa
already given in Ref. 23, where we calculated~with a differ-
ent method than the one employed in the present work! the
resonance widths in the region from the threshold up
about 4000 cm21 above it. The main finding was a pro
nounced state dependence of the unimolecular decay wk
fluctuating over seven orders of magnitude. A detailed an
sis of this wide distribution was not the aim of that initi
survey study. In the present work we attempt to rationa
the strong state dependence of the resonance widths a
this end analyze the resonance wave functions and re
their structure to the magnitude of the dissociation rate.
convenience, only a narrow energy range of about 500 cm21

above the threshold is considered. Each of the;160 eigen-
functions is visually inspected and assigned~when possible!.
A complete list of the calculated resonance energies, wid
and assignments can be obtained from one of the aut
~R.S.! or electronically.70

The resonances can be roughly divided into two grou
Those whose wave functions are mainly confined to the
gion of the potential well—with only small amplitudes in th
exit channel and those whose wave functions extend far
into the dissociation channel, in many cases even to
boundary of the grid. In order to simplify the notation, w
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
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will refer to the first group of states as quasibound states
denote the resonances with wave functions significantly p
etrating into the product channel as ‘‘d’’ states in what fo
lows. The states denoted by (v1 ,v2 ,x)D previously are a
subgroup of the ‘‘d’’ states. The distinction of the tw
groups is, of course, not completely unambiguous. All c
culated resonance widths are depicted in Fig. 12.

Most of the quasibound states have widths below
cm21, which corresponds to a lifetime of the order of 5 p
Many of them have a clear-cut assignment in terms of qu
tum numbers (v1 ,v2 ,v3) in the same way as the true boun
states@Fig. 13~a!#. All assignable states have at least o

FIG. 12. Resonance widthsG as a function of the excess energyE0 . The
widths for states which are mainly localized in the region of the poten
well are represented by the closed circles and the widths for states w
extend far into the fragment channel are indicated by the open circles.
solid line is the width estimated from SACM theory and the dashed l
representsGmax(E0) defined in Eq.~13!.

FIG. 13. ~a!–~d! Selected examples of resonance wave functions. Thg
axis ranges from 19° to 178° and theR axis ranges from 2.5a0 to 5.43a0 .
The two numbers in each panel are the excess energyE0 and the widthG ~in
brackets!, respectively, both given in cm21. The wave function in~c! ex-
tends far beyond the range shown.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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quantum stored in the weakly coupled HO stretching mo
As previously mentioned, the spectra for different values
v1>1 are to a large extent replicas of the spectrum ofv1

50. Thus, exciting HO by one or several quanta promote
considerable number of states with clear–cut assignment
the continuum without making the excess energy direc
available for the dissociation mode. In other cases the ass
ment is not at all clear@Fig. 13~b!#. Such states typically
have many quanta in modes 2 and 3 and relatively la
widths. The widths of the quasibound states show a g
diversity with fluctuations over several orders of magnitu
Because of the very narrow energy interval studied, it is
possible to investigate longer ‘‘progressions’’ of resonan
like for HCO, for example.82 Nevertheless, some conclusion
can be drawn. The lower bound of the distribution is form
by the states with strong excitation in the HO mode a
weak excitation in the other two modes. Their width can
as low as 1026 cm21. It must be underlined that states wi
large values ofv3 do not necessarily have large dissociati
rates. As previously discussed, the (0,0,v3) states are
strongly bent in the (R,g) plane, i.e., they avoid the direc
dissociation path, and therefore they do not couple efficie
to the continuum. Strongly fluctuating widths for the assig
able states have been also reported by Skokov, Bowman
Mandelshtam31 in their study of the HOCl dissociation.

The resonances belonging to the ‘‘d’’ group must
analyzed with great caution. Since their wave functions
tend with large amplitude into the dissociation channel,
many cases they must be interpreted as ‘‘direct scatte
states.’’ In contrast to the quasibound states, their widths
difficult to converge with respect to the parameters~onset
and strength! of the optical potential, especially for thos
states whose wave functions reach the end of the grid.
cause the ‘‘d’’ states have strong excitation in the dissoc
tion mode, the widths are generally much larger than
widths of the quasibound states (G.1 cm21 or so!. The
reason why we do not eliminate them from the present
cussion is their close similarity with the D states discusse
great detail in the previous sections.

A rough estimate of whether a pole of the Green’s fun
tion represents a meaningful resonance state or not ca
derived as follows. The wave number, corresponding to
dissociation modeR, for a complex eigenstate is als
complex,83

kR5
1

\
A2mR~E02 iG/2!. ~12!

Thus, the outgoing wave, exp(ikRR/\), contains an exponen
tially growing admixture, which for a narrow resonance h
the form exp@1(mR/8E0)1/2GR/\#. This term becomes sig
nificant at a certain ‘‘critical distance,’’R5R* , at which the
exponent is of order of unity.R* is a function of the reso-
nance width and the excess energyE0: The broader the reso
nance and the smallerE0 , the smaller isR* . If R* lies in the
inner part of the potential, the divergent term strongly affe
the wave function and an assignment consistent with the
signment of bound states cannot be made. In contrast, w
functions withR* lying in the asymptotic region can be an
lyzed as if they were bound. Rigorously speaking, only th
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
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states are undisturbed by the exponential growth for wh
R* exceeds the potential radius, that is — in practice —
boundary of the grid,Rmax. The conditionR* 5Rmax defines
a maximum resonance width, which a state may have w
out being affected by the exponential divergence,

Gmax~E0!'2\A2E0 /mRRmax
21 . ~13!

The square root in this equation is the velocityvR of a free
particle with massmR and energyE0 , and thus the maximum
width corresponds to the time a particle, ballistically eject
requires to fly across the grid. This estimation suggests
the interpretation of poles withG.Gmax as ‘‘metastable’’
states is rather symbolic. For HOCl, a typical value ofGmax

close to the threshold (E0510 cm21) is 2 cm21, while for
500 cm21 above the thresholdGmax'14 cm21. The large
reduced mass of the HO–Cl system causesGmax to be so
small in the present case. The curveGmax(E0) is depicted in
Fig. 12; for comparison, the widths according to the stati
cal adiabatic channel model of Quack and Troe84 are also
shown. Of course, the one-dimensional estimation Eq.~13! is
only an upper limit. All the quasibound states have widt
which fulfill the requirementG,Gmax. A more rigorous way
for distinguishing the real resonance states from direct s
tering states would be to perform calculations for differe
grid boundaries and to analyze how the various pole ener
vary. This is a very time consuming procedure and has
been done here.

A typical wave function for a state withG'Gmax is de-
picted in Fig. 13~c!. It stretches all the way to the bounda
of the grid. Although the HO mode is not excited, it has
regular nodal structure in theR coordinate, and excitation in
the local bending mode can be clearly distinguished. Beca
wave functions of this type are so similar to those shown
Fig. 6 ~right column!, we believe that these states are t
continuations of the bound (v1 ,v2 ,v3)D~P! states into the
continuum. Their lifetimes are nearly ballistic or eve
smaller. The D states just under the threshold are kept bo
only by a tiny potential force at large interfragment di
tances. Several wave numbers of additional energy in
dissociation mode are enough to smoothly transform th
into quickly dissociating states. A similar effect was recen
observed in model studies of the near-threshold dissocia
of NO2.85

Nevertheless, there are also a few states of the ‘‘d’’ ty
with widths well belowGmax and which can be considered a
quasibound states. They have at least one quantum of
stretch. Because a substantial amount of energy is store
the weakly coupled mode, their lifetime is comparative
long. These states are bound with respect to the HOv1

51) asymptote and can decay only by a nonadiabatic tr
sition to v150 manifold, in a similar way as previously de
scribed for HCO.86 A wave function for a typical example is
shown in Fig. 13~d!. Except for a small-amplitude tail it doe
not extend to the grid boundary and has exactly the form
the (v1 ,v2 ,v3)D~P! bound-state wave functions.

The extreme state specificity of HOCl is mainly due to
lack of coupling between the modes. If the coupling we
stronger, the dynamics would be more irregular and the w
functions would look — on average — more alike. As
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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consequence, the dissociation rates would not vary as m
as for HOCl. The dissociations of HNO21 and NO2 ~Ref. 87!
are typical examples.

VII. SUMMARY

~1! We have calculated a potential energy surface for
ground electronic state of HOCl appropriate for studying
dissociation into HO and Cl. Theab initio calculations have
been performed using the multireference configurati
interaction method and a quintuple-zeta one-particle b
set. The agreement with known experimental data~equilib-
rium data, dissociation energy, transition frequencies! is very
good.

~2! All bound states up to the dissociation threshold,
total angular momentumJ50, have been calculated b
means of the filter diagonalization technique. Altogether,
potential energy surface supports 827 bound vibratio
states.

~3! The bound state spectrum is affected by a 2:1 anh
monic resonance between the HOCl bending mode and
OCl stretching mode leading to a clustering of the ene
levels in terms of polyads. The resonance is only appro
mate at low energies, but because of the anharmonicity o
OCl stretching mode it becomes better and better fulfilled
higher energies.

~4! As a result of the Fermi resonance the bending m
and the OCl stretching mode are significantly mixed with
consequence that the pure (0,0,v3) overtone states acquir
more and more bending character and avoid the dissocia
channel.

~5! States, which do clearly follow the dissociation pa
come into existence at high energies. This family of state
very anharmonic with the result that their density quick
increases with energy.

~6! The structure of the quantum mechanical spectr
and the quantum mechanical wave functions has been in
preted in terms of the structure of the classical phase sp
and certain stable periodic orbits. In particular, the abr
birth of the dissociation states can be viewed as the resu
a saddle-node or tangent bifurcation.

~7! The bound-state spectrum persists into the continu
with the wide variety of wave function structures leading
a pronounced state specificity of the dissociation rates.
above-threshold counterparts of the bound states with c
extension along the dissociation channel are broad r
nances with nearly ballistic lifetimes.
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82H.- M. Keller, H. Flöthman, A. J. Dobbyn, R. Schinke, H. -J. Werner, C

Bauer, and P. Rosmus, J. Chem. Phys.105, 4983~1996!
83E. Merzbacher,Quantum Mechanics~Wiley, New York, 1970!.
84M. Quack and J. Troe, Ber. Bunsenges. Phys. Chem.78, 240 ~1974!.
85S. Yu. Grebenshchikov, A. Delon, R. Schinke, and R. Jost~unpublished!.
86H.-J. Werner, C. Bauer, P. Rosmus, H.-M. Keller, M. Stumpf, and

Schinke, J. Chem. Phys.102, 3593~1995!.
87S. Yu. Grebenshchikov, R. Schinke, and V. A. Mandelshtam~unpub-

lished!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


