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A detailed analysis of the bound-state spectrum of H®@boclorous acigin the ground electronic

state is presented. Exact quantum mechanical calculatidtes diagonalization are performed
employing an ab initio potential energy surface, which has been constructed using the
multireference configuration-interaction method and a quintuple-zeta one-particle basis set. The
wave functions of all bound states up to the HOI dissociation threshold are visually inspected in
order to assign the spectrum in a rigorous way and to elucidate how the spectrum develops with
energy. The dominant features df¢ a 2:1 anharmonic resonance between the bending mode and
the OCI stretching mode, which is gradually tuned in as the energy increasdg) anshddle-node
bifurcation, i.e., the sudden birth of a new family of states. The bifurcation is further investigated in
terms of the structure of the classical phase sp@mariodic orbits, continuation/bifurcation
diagran). It is also discussed how the spectrum of bound states persists into the continuum and how
the various types of quantum mechanical continuum wave functions affect the state-specific
dissociation rates. @000 American Institute of Physid$§0021-96069)00901-(

I. INTRODUCTION frequencies gradually tune into resonance as the energy in-

The spectrum of vibrational states of a molecule reflect<€aSes, because one mode is considerably more anharmonic
in a unique way the intramolecular forckt.is usually regu- than the other one. The resultl is that the mixing between the
lar and easily assignable in terms of a set of quantum num0des gradually develops with energy and becomes fully
bers, provided the excitation energy is not too high, i.e., th&Stablished at relatively high energies. An example, which
displacements of the vibrational coordinates from equilib-Will be investigated in the present study, is the 2:1 HOCI
rium are smalf With increasing energy the coupling be- Pend: OCI stretch resonance in HOCI.
tween the modes typically grows with the consequence that Anharmonic resonances bring about intriguing effects as
the spectrum becomes more complex and the assignment 8fe follows the spectrum from low to high energies, e.g., the
the states gradually becomes more difficultventually the  birth of a completely new class of wave functions, which did
dynamics is mainly irregular and the majority of states can-not exist at lower energies. Such an effect, known as saddle-
not be straightforwardly labeled by quantum numbers. Thélode or tangent bifurcation in the nonlinear dynamics
“rate” with which this change occurs depends, of course, onliterature’**® has been predicted to happen in H€RNd
the particular molecule, i.e., the potential energy surfacéndeed has been observed in stimulated emission pumping

(PES and the masses of the constituent atoms. (SEP spectra®>'® As we will demonstrate in the present
As one climbs up the ladder of vibrational energies, in-work a similar bifurcation exists in HOCI.
teresting effects may occirA common effect is the exis- Understanding the structure of a quantum mechanical

tence of an anharmonic resonance — the near degeneracy sffectrum over an extended energy regime can be quite cum-
vibrational levels, which leads to a substantial mixing of thebersome, even for a triatomic molecule. However, in numer-
correspondingzero-ordey basis functions=® As a result of  ous applications it has been demonstrated that classical me-
such resonances the energy levels are grouped into polyadshanics, especially periodic orbifs® and continuation/
Examples, which have been recently investigated in somgifurcation diagrams? can be extremely helpful in
detail by us, include the 1:1 DC stretch:CO stretch resointerpreting quantum spectra. This has been shown for
nance in DCJ? the 1:1 NO stretch : HNO bend resonance in HCP2 and it is likewise true for HOCI.

HNO," and the 1:2 HCP bend:CP stretch resonance in  The hound states of a molecule do not abruptly terminate
HCP*?*3In all these examples the resonances are already; the dissociation threshold, but persist into the continuum
present in the fundamentals and continue to shape the spegs resonance or quasibound st&fedrhile bound states are
trum up to high energies. Another possibility is that two the real poles of the Green’s function, resonances are poles
in the complex energy plane with the imaginary parts repre-
3Electronic mail: rschink@gwdg.de senting the dissociation rates or the inverse of the lifetimes.
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The decay of resonance states is intimately related to unimg-7s6p4d3f2glh] set for chlorine, a (1gBp4d3f2glh)/
lecular dissociation process&s>>Whether a resonance state [6s5p4d3f2g1h] set for oxygen, and a & p3d2flg)/
decays slowly or fast ultimately depends on the structure of5s4p3d2f1g] set for hydrogen, thus resulting in a molecu-
the corresponding wave function. In a recent article we foundar one-particle basis set of 241 contracted functions. Only
that at threshold the dissociation rate of HOCI varies bythe spherical harmonic components of théaroughh polar-
more than seven orders of magnitifdén the present article ization functions are used. The reference wave function in
we attempt to rationalize this “unexpectedly broad” distri- the icMRCI calculations consists of a full valence complete
bution of resonance widths in terms of the nature of the wavective spacéCAS). The wave function thus includes all ex-
functions near the H®CI threshold. citations of 14 valence electrons in 9 molecular orbitals cor-
The spectroscop§?® and dissociatioff~2® of HOCl are  responding to the valence atonsp orbitals of chlorine and
the target of recent experimental interest. However, due toxygen, and the 4 orbital of hydrogen. For each point of the
experimental limitationgvibrational overtone spectroscopy PES, the reference wave function is determined in the com-
only states in the vicinity of overtones of the HO bond areplete active space self-consistent field calculation
considered — out of the-800 bound states merely 2%—3% (CASSCH.283°The molecular $- and Zp-like core orbitals
have been experimentally analyzed. Parallel to our own thesf chlorine and the &-like core orbital of oxygen are kept
oretical work, the spectroscopy and dissociation of HOCI isdoubly occupied in all the configurations and optimized. In
currently under investigation — using an independently calthe vicinity of the minimum of the PES, the Cl-expansion
culatedab initio PES — by Skokov and co-workef$:3?We  coefficient of the SCF configuration in the CASSCF wave
will refer to their work in the following when it is appropri- function is determined to be about 0.98 and there are only
ate. two excited configurations with coefficients greater than
The subject of the present article is a comprehensiv®.05. The total energy of hypochlorous acid is determined in
analysis of the HOCI spectrum from the bottom of the po-the following icMRCI calculation, in which all single and
tential well to the HO-CI dissociation threshold and above. double excitations with respect to the reference wave func-
We will focus the discussion ofi) how the level pattern and tion are included and external configurations are internally
the underlying wave functions change with energiy,how  contracted**® The molecular core orbitals are kept doubly
new states appear as a consequence of a saddle-node bifaccupied in all the configurations. This results in over one
cation of the classical phase space, @nglhow the structure  million contracted configurationgn contrast to over 75 mil-
of the bound-state spectrum affects the state-specific disstion uncontracted configurationsThe multireference David-
ciation rates. The article is organized in the following way: son correctioff** to the calculated energ§icMRCI+Q) is
The ab initio calculations and the analytical fit of the PES then employed to approximately account for the effects of
will be described in Sec. Il, followed by a brief account of higher excitations. The total energies are determined to an
the dynamics calculations in Sec. Ill. The evolution of theaccuracy better than 16 hartree. The calculations are per-
bound states is the topic of Sec. IV, followed by classicalformed using thevoLPRO-96 program??
calculations in Sec. V, which elucidate the gross features of
the quantum spectrum in terms of a continuation/bifurcation
diagram. The consequences of the various types of wavg. analytical fit
functions for the dissociation rates are explicated in Sec. VI. ) ) )
The main results are summarized in Sec. VII. In a future  1he PES is constructed by varying the two bond dis-
paper we will provide a more detailed analysis of the bound2Nc€Ruo @ndRoc and the HOCI bond angle on a three-
state structure in terms of a two-dimensiof@D) model, in  dimensional grid: 2&<=Roc=<9ag, 1.38=Ry0=3.5,
which the HO stretching degree of freedom is adiabatically?d 20°<a=160°. The grid spacings ar&Roci=ARko
separated® The reduction to two degrees of freedom allows — 0-120, @ndAa=10° for the largest part of the grid. Near
a more detailed analysis of the variation of the classicaf® €quilibrium smaller spacings are chosen, whereas for
phase space with energy and the classical/quantum mechaflfrge OCI dlstances_ the grid is coarser. Altpgether We_have
cal correspondence. Additional clues about the spectrum didlculated 1234 points. Only the HKCI exit channel is
HOCI are obtained from a description in terms of a 1:2 reso—sz:lmpleq,f3 ‘tﬂe other two dissociation channels; K| and
nance Hamiltonian model, fitted to either the 2D or the threel1+OCl. """ are energetically considerably higher and there-

dimensional (3D) quantum mechanical energy level foré not considered in the present work. ,
spectrunt® The analytical fit expression uses the three bond dis-

tancesRyo, Roc, and Ry rather than the two bond dis-

tances and the HOCI bond angle. It is hoped that this gives a
Il. POTENTIAL ENERGY SURFACE more reasonable extrapolation to the two linear configura-
tions (@=0° and 180°, where nab initio points have been

. ) calculatedl. Following Sorbie and Murrélf the total poten-
The total energies of hypochlorous acid are calculatedig| is written as

using the internally contracted multireference configuration

interaction method, icMRCY*?® The one-particle basis set  Y(Roci:Ruo:Rein) =Vi(Roci:Ruo . Rein) + Vio(Rro)
employed in this study is the correlation-consistent polarized (1)
basis set of quintuple-zeta quality, cc-pV&Z’ The cc-  with V, going to zero for large OCI bond distances. Because
pV5Z basis set consists of a (@®p4d3f2glh)/  of some numerical instabilities of thed initio calculations at

A. Ab initio calculations
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large OCI distances, we do not calculate the asymptotic HGABLE 1. Equilibrium geometries(A and deg, dissociation energies

. : _ : - " .
oscillator, but use instead the Morse expression for it, (cm™?), and fundamental transition frequencies (cin
Vho(Ruo) =Dyl 1— e~ Bro(Ruo~ Rao)]Z ) Original PES Scaled PES Experiment
. RS 0.964 0.967 0.9644
The parameters are taken from the literaftfr&,o=4.621 REOI 1.694 1702 1.6890
— OCI . . .
eV, Buo= 1.213910 1, andRﬁo= 1.8323%,. In what follows, o® 102.2 102.2 102.96
energy normalization is such th@&=0 corresponds to D¢(HO-CI) 20 366.6 20 366.6 —
HO+CI with the HO distance fixed at equilibrium. The “in-  Do(HO-CI) 19347.3 19349.9 192903
teraction potential” is written as a threefold sum of one- "t igig'g iggg'g iggg'gg
. . . 123 . . .
dimensional functions, vy 726.0 7946 724 36

Vi(Roci:RuoRein) *The experimental equilibrium structure was taken from Refs. 48 and 49.
PReference 28.

= 3[1+tanh(6—Rog) ] ‘Reference 50.
dReference 51.

7 7
x2 2 2, a1 8i(Ruo)hj(Roc)di(Rew), (3
with the vicinity of the equilibrium configuration are well below 1
B meV. The sets of X512 linear parametera) anda{} as
0i(Ryo) =[1— e *ro(RHo~Rno) |1, (4)  well as a FORTRAN code can be obtained from one of the
_ authors(R.S).
hj(Roc) =[1—e *oc(Roc—Rochitl 1, (5) The calculated equilibrium structure agrees favorably
— with the experimental on€lable |). The dissociation energy
di(Rep) =[1— e~ cnFon—Raw]!, (6)  Dy(HO-CI) is also in good agreement with the experimental

The noninea paameers a6y, Foc32,, V0%, UG spv et couping i e calcuatons
RClH: 4ao f kHO: 038.6 1, kOC|: 083.6 1, and kCIH gy y

—01a-1 All functi h (R ¢ R ' improve the calculated value. The deviations in the funda-
o0 unctions i( O?') go 10 2€10 a%Roc) YOS 10 o ia| transition frequencies are 9, 7, and 2 érfor modes
infinity. In order to avoid spurious features at large distances 2, and 3, respectivelyy{, v,, andvs are the HO stretch
X . y &y ) y Y2 3 -

\c/jvherg fe\f/vef[ ppmltzs (2;’“./6. t;eedn cac;culated, the addmona} g, the bending, and the OCI stretching mode, respectively.

amping factor in £9(s) 1 introduced. One of the goals of our study of HOCI is the decay of the

The linear parametersy; are .determlned using a least- overtone state$6,0,0 and (7,0,0, for which experimental
squares procedure employing a singular value

decompositiodf! In order to decrease the overall deviationerSl'”tS are availabfé*® Although a deviation of only 9
P I . . cm™ ! for the HO fundamental frequency is very satisfactory,
from the ab initio points, we actually performed two inde-

pendent fits; the resulting interaction potentials are denotet e deviations for the higher overtones seem to be unaccept-
’ ; . . . . ble. In order to further improve the agreement, we slightl
by Vl(l) andV,(Z), respectively. In the first fit, all points with P g gnty

ies below the HOCI threshold taken int ¢ scaled the two bond distances, ix- ex with e=0.996 for
energies below the resnold are taken Into account o 1o pond and 0.998 for the OCI bond distance. While the
with weight one, whereas points with energies above th

threshold are given a smaller weight. In the second fit al'l%rlglnal PESoverestimatethe HO stretching frequency by 9

points are included with identical weight. Thug{* pro-
Vl(dz?s _a more accurate d_ess:npﬂon of the potentlal ,Wel,l’ WhlleI'ABLE 1. Comparison of calculated and observed vibrational band origins
Vi*’ gives a better description of the global potential, includ-(¢m-1),

ing both the well region and the repulsive parts of the poten

tial. The final expression for the PES is a weighted sum of (vi.v2.v3) Theory Experiment Exptl. Ref.
both fits, with a switching function which ensures that the 000 0 0
two expressions are smoothly joined, i.e., 001 724.6 724.36 51
1 @) 010 1238.3 1238.62 51
V=(t=1)V|7+tVi¥+vyo. (7 020 2458.2 2461.21 52
. L ) 100 3602.2 3609.48 50
The switching function is defined by 101 43238 433191 53
1 ) 110 4813.8 4820.43 53
t=2{1+tanhi8(V|”+vuo+0.8]}. ®) 120 6003.3 6013.83 53
The potential energies in EB) are given in electron volts. 200 7036.7 7049.81 54
. L X 300 10307.7 10322.29 53
qu energlels below-0.8 eV the potentlal is mainly 2de.ter- 310 11463.2 11478.01 55
mined byVl( ) whereas for energies above0.8 eV,Vf Vis 320 12593.2 12 612.55 24
the dominant part. 400 13416.9 13427.39 56
The rms deviation of the fit from thab initio points is 410 14535.4 14 555.60 o6
5.9 meV including only points from the minimum ®=0 500 16359.1 16364.75 56
o 600 19125.4 19122.80 Cited in Ref. 29
and 8.8 meV, if points up to an energy of 4 eV above the , 21715.6 21709.07 27

threshold are taken into account. The deviations for points in
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cm %, the scaled PESinderestimated by 7 cm . How- 160 "1.82a,
ever, the scaling factor is chosen so that the disagreement

with the experimental energies is small falt states of the __ 120
(v41,0,0) progression withv;=1 through 7(see Table I\ & !
The other two transition frequencies obtained with the scaled = 80
PES are in very good agreement with experiment. The scal- 40
ing slightly modifies also the equilibrium bond distances.

This could be corrected for by a tiny translation of the two 0
stretch coordinates, which, however, has not been done. All

dynamics calculations, which will be presented in the follow- 3.3
ing, are performed with the scaled PES. o8

In Table Il we compare vibrational band origins with
available experimental data. The agreement is satisfactory
with the largest deviation being 20 crhand a rms deviation
of 11 cm L.

There are two other PESs available for HOCI, which
have been constructed very recently. PeteYsdetermined a
near-equilibrium PES based on high quality coupled cluster
ab initio calculations. With this PES the experimentally
known overtones and combination bands up to energies of
about 10000 cm® were accurately reproduced. However,
because this PES is restricted to configurations not too far
from equilibrium, it cannot be used for studying the frag-
mentation into HO and CI. Similaab initio calculations on
an even higher level of accuracy were subsequently per-
formed by Koput and PetersGf.Skokov, Peterson, and
Bowmar?® extended the calculations of Peterson and con-
structed a global PES, which is suited to study high overFiG. 1. Contour plots of the HOCI ground-state PES. The contour spacing is
tones of the HO stretching mode as well as dissociation int@-25 eV and the highest energy in each panel is 3 eV. Energy normalization
HO+CI. The ab initio level is comparable to the level of is such thae=0 corresponds to H®CI with HO at equilibrium.
accuracy used in our calculations. Skokov, Peterson, and
Bowman, however, performed a more elaborate scaling pro-
cedure and therefore their PES reproduces the experimef;. cALCULATION OF BOUND AND RESONANCE
tally known vibrational energies slightly better than our sur-STATES
face. The general topographies of the two potential surfaces
are very similar. All dynamics calculations are performed using the filter

Figure 1 depicts three two-dimensional cuts through thefiagonalization methot?™®! In a first step, optimally
PES. The coordinates are the Jacobi coordinates approprisd@apted basis functioriso-called 'window basis functions’
for dissociation into HO and CR, the distance from CI to
the center of mass of H®@, the HO bond distance, ang
the angle between the two vectd®sandr (y=180° corre-

rlag]

¥ [deg]

1.3 1.8 23 2.8 3.3

r[a,]

sponds to linear HOGQI The two dissociation channels, 10 ' ' ' ' '
HO-+CIl (R—=) and H+OCI (r—=), are clearly seen in 05 (0,0,v3) ]
Fig. 1 (middle panel. However, the latter one is consider- ol ooa (0.0X)p

ably higher in energy and therefore is of no consequence for f

our study. There is no barrier in the HECI exit channel D

(Fig. 2). In the linear geometryy=180°, two pronounced E a0l i
maxima exist, which are caused by conical intersections with ~ w

higher electronic statés.The first one occurs nedt~4a, 15 F
[Fig. 1 (upper pangl and the second one is located at large

HO distancegFig. 1 (lower panel]. 20

The main characteristic of the HOCI ground-state PES is 251 ]
the weak potential coupling between the three internal de- 3.0 . s s s s
grees of freedom. The minimum energy paths are almost 2 3 4 5 6 7 8
perfectly aligned along the respective coordinate axes. At R [ap]

low energies the same is true for the nodal lines of the quanF-IG o Mini h alond the dissociati ikt
. . . . FIG. 2. Minimum energy path along the dissociation coordi e po-
tum mechanical wave functions. At hlgher energies, hOWtential is minimized in the other two degrees of freedom. The symbols

ever, an _anharmonic resonance beFWEBan(_j y is devel-  jndicate the extension of wave functions in the two progressionsvg,0,
oped, which strongly changes this simple picture. and (0,0x),,, respectively(see the text
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V¥, which span only a relatively small subspace of thesignificantly extended in th& direction as compared to the
whole Hilbert space, are generated by applying the Green’sound-states calculations, the number of grid points in the
function dissociation coordinate is increased to 220. In addition, we
~ N g observed that an unexpectedly high number of Chebychev
G (E)=(Ei—H+iW) ©) iterations(180 000 is required for converging the resonance
as a filtering operator onto an initial wave packet widths of states having substantial excitation in the HO
stretching mode.

Vi=ImG*(Ex, (10
where iW is a complex absorbing potentiaW=0 for V.- CHARACTERIZATION OF BOUND STATES
bound-states calculationsThe energie€; are taken to be We have calculated all the bound states up to the

equally spaced in the interv@E,,Enad- The filtering is  Ho+Cl dissociation threshold—827 on our PES—and we
efficiently performed using thémodified Chebychev poly- have visually inspected each of them in order to recognize
nomial expansion of the Green’s functitr®In the second  how the structure of the spectrum changes with eneiy.
step the eigenstates in the energy winddi,n,Emad are  Jist of all bound state energies and assignments is available
calculated by diagonalizing the Hamiltonian in the small setg|ectronically® or can be obtained from one of the authors
of basis functionsV; . (R.S).] The inspection “by eye” is indispensable, we be-
Because the window basis functions are explicitly storedieve, for making the correct assignment. The energy level
in the core memory of the computer, it is necessary to carespectrum of HOCI is simple and the assignment of the vibra-
fully choose the size of the energy windofy,in,Emaxd- AS  tional states is straightforward up to about four-fifths of the
a rule of thumb, the number of basis functions for a particugissociation limit. Then, however, complications related to a
lar interval should be roughly twice the number of eigen-saddie-node bifurcation of the corresponding classical phase
states as estimated from the expected density of states in tl*ggace occur, which make the interpretation considerably
window. In the present case we have calculated all the 82ﬁ]ore Comp"cated. We will first discuss the |OW_energy re-
bound states supported by our PES in 13 overlapping energyime and subsequently focus on the changes happening at
windows, where we tried to keep the number of eigenstatefigher energies. The coupling between the HO stretching
per window roughly constant. While the lowest energy win-mode and the other two degrees of freedom is very weak, so

dow ranged from—2.2 to —1.3 eV, the highest window that it is justified to analyze the manifolds for different val-
covered an energy region of only 0.03 eV. None of the calyes ofv, separately.

culations needed more than 300 Mbytes of main memory. )
For the highest lying energy window the three- A Polyad structure for  v,=0 in the low-energy
dimensional grid was chosen to extend froma.50 10.(, regime
in R with 150 potential-optimized poinf8, from 1.0, to At low energies all states can be clearly assigned in
3.584 in r with 30 potential-optimized points, and from 0° to terms of quantum numbers {,v,,v3). The wave functions
180° in the angular coordinate with 70 Gauss—Legendref the pure overtone states40,0), (Oy,,0), and (0,045)
quadrature point® The grid size ofN=2315000 points has are basically aligned along the HO stretch coordinatéhe
been further reduced td=197 000 points by discarding all angular coordinate/, and the dissociation coordinal re-
points with potential energies larger than 1.8 eV. We foundspectively. The fundamental OCI frequency is slightly larger
that 60 000 Chebychev iterations were sufficient for convergthan half of the fundamental bending frequency, that is, the
ing even the highest bound states of HOCI. spectrum is governed by an approximate 1:2 anharmonic
The calculation of the complex resonance energiesesonance: Two quanta of OCI stretch are roughly worth one
above the HG-Cl dissociation threshold has been performedguantum of the bending mode. As a consequence, the spec-
by adding an imaginaryabsorbing potentiaf’ -®°iw to the  trum is organized, for a given HO quantum number, in
Hamiltonian[see Eq(9)].6%63%4t enters the filtering pro- polyads denoted by, ,P]. The polyad quantum number is
cedure in the form of a damping operator exp(R)]. Fol-  defined by P=2v,+v;. Figure 3 illustrates the polyad
lowing Mandelshtam and Taylor, the coordinate dependergtructure of the energy levels for =0 in the range of poly-
function ¥(R) is assumed to have the foffif-83 ads[ 0,19 through[0,30]. The spectra with excitation of the
HO stretching coordinate are virtually replicas of thg=0
Dy ( R—Rgamp 2 spectrum, roughly shifted by one, two, etc., HO vibrational
B (AH)¥#2|R p) O (R—Ryamp - (11 quanta to higher energigsee the following The number of
states in each polyad i@ 2)/2 for even values oP and
Here,AH (in atomic unit3 and® denote the spectral range (P+1)/2 for odd polyad quantum numbers. Already at low
of the Hamiltonian and the Heaviside step function, respecenergies the polyads significantly overlap. The OCI stretch-
tively. The three adjustable parameters are the dampingg states (0,®) are always at the top of each polyad,
strength,Dg, the starting point for the absorbing potential, whereas — up to polyafi0,27] — the bending overtones
Rdamp: @nd the end point of the grid in the dissociation co-(0,y,,0) or (Oy,,1) demarcate the lower end. Around the
ordinate R... The relationship betweep andW is explic-  energy of—0.5 eV structural changes occur, which are dis-
itly given in Ref. 64. After many test calculations we found cussed in detail in Sec. IV B.
the following parameters to give tolerable resonance widths: In order to illustrate the general behavior of wave func-
Rmax=1439, Ryamp= 1239, andD,=0.1. Because the grid is tions in the low-energy regime, we depict in Fig. 4 the wave

¥(R)

max Rdam
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functions for all states of thg0,17 polyad. We plot them in  upper ends of the polyads. For example, the @),Qyave
the (R,y) plane because of the resonance between the benflinctions become gradually more curved in thi& ¢) plane
ing and the OCI stretching degrees of freedom. The labelings illustrated in the left-hand panel of Fig. 6. The curvature is
with quantum numbers is straightforward: They specify thealready present for polya®=12 (Fig. 4), but it becomes
number of nodes along the three coordinate axes. Because darly pronounced not untl is larger than 16 or so. This
the relatively large mismatch of more than 100 drbe-  horseshoe-type behavior is typical for systems governed by a
tweenv,/2 andv;, the mixing betweerR and y is not well ~ 1:2 resonancB.As a consequence of the mixing, the states
developed in the lower energy region and the wave functionsvhich at low energies start out to advance along the disso-
do not show the general structure characteristic for a 1:Ziation coordinateRq, at high energies avoid the dissocia-
resonancé’* The backbones of the wave functions for statestion path. This is illustrated in Fig. 2, where we plot the
(0,P/2,0) and (0,) are almost perpendicular to each value of the dissociation coordinat®,,,, at which the
other. (0,0,P) wave functions have their outermost maximum, ver-
However, being the dissociation mode, the OCI stretch isus energyR, .« first increases withP, reaches a maximum
much more anharmonic than the bend. Therefore, the misaroundP~17-18, and then again decreases slightly. As will
match between the corresponding transition frequenciebe discussed in Sec. V, the backbones of the PQ,0vave
gradually decreases and the resonance condition becommctions are scarred by a stable classical periodic ¢F).
better and better fulfilled, as it is seen in Figch where we  Because of the strong mixing, referring to the (B)Ostates
show for the two progressions (0F), and (OP/2,0) the as “OCI stretching states” is meaningless, except in the low-
energy gap between adjacent levels as functions of energgnergy regime. The quantum numhgrdenotes the number
The transition frequencies of the bending mode are divideaf nodes along the corresponding PO, rather than alongthe
by two. The two frequency curves come very close to eaclaxis. In contrast, the wave functions of the states at the bot-
other nearP~16 and remain close unt~25. The more tom of the polyads, (®/2,0), retain their general shape
and more exact resonance leads to an increasing mixing b&om low to very high energies. They do not show the be-
tween theR and they motions, at least for the states at the havior representative for a 1:2 resonance. Their backbones
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FIG. 4. Wave functions for polya®=12. They axis ranges from 19° to - \‘E_ k
179° and theR axis ranges from 2&, to 5.42a,. All wave function plots [7+]\‘_$:
depicted in this article, if not stated otherwise, have been obtained from a 20001 L L L 1
plotting routine which allows one to rotate 3D objects in space. Shown is 20 15 1.0 0.5 0
one particular contoue(R,r,y)=|¥(R,r,y|? with the value ofe being the Energy (eV)

same in each figure. The plots are viewed along one coordinate axis, in the
direction perpendicular to the plane of the other two coordinates. Shadin&

emphasizes the 3D character of the wave functions. The potential is shownIG' 5 (3~(c) Energy difference between adjacent st_ates of the pure pro
. - -gressions ¥;,0v3), (v1,v2,0), and ¢;,0X)pp as function of energy for

in the upper left-hand panel. The numbers are the energies of the respective : ; o ;
quantum states v,=0,1, and 2. The inset iic) shows an enlargement of the “crossing

region.” (d) Frequencies of the classical periodic orbits belonging to various
families. Solid lines indicate stable POs and dashed lines represent unstable
. ones. The branches, which influence the quantum mechanical states, are
are also scarred by a stable RP&&e the following indicated by the thicker solid lines. The frequencies of the/{0) states

A quantity, which to some extent reflects the degree ofand, likewise, the frequencies of tiie]-, [¥]-, and[y*]-type POs are
mixing, is the energy spacing between adjacent levels insidévided by two. See the text for more details.
the polyads. In Fig. 7 we depidE=E}.—E"_, as function

of n for various polyadsP; the indexn specifies the state . ) )
inside the polyad witm=0 being the lowest state. In the tortion is most pronounced for the states in the middle of the

low-P region, AE is a smooth, monotonically decreasing polyads, yvhereas the states near the bottpm or.the top of a
function with its minimum value at the top of the polyad. polyad still can be characterized and assigned in the same

BetweenP=16 and 18, however, the energy spacing curvélanner as for the lower polyads. Figure 8 illustrates these
loses its monotonic behavior. changes in the wave function character for selected states

belonging to polyadq0,21] through[0,25. The way in

which the assignment is done, i.e., the “axes” along which

the number of nodeg, andv; are counted, is illustrated by
The increasing coupling betwedéhand y with increas- the arrows in some of the panels.

ing energy and the resulting mixing leads — above polyad The wave function for statéd,7,8 in polyad[0,22] still

[0,21] — to a gradual distortion of the simple appearances ohas a structure, which matches the behavior of the wave

the wave functions observed for the lower polyads. This disfunctions in the lower polyads and its assignment is quite

B. Genesis of dissociation states

Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



84 J. Chem. Phys., Vol. 112, No. 1, 1 January 2000 Weil} et al.

200, T T T T T T T T T T T T

(0,0,16) (0,0, z)p(26) 5 po14 A
“””Hm . 0‘“\ 200 I —ttttt— |
a W e -
~0.89549 eV —0.30875 eV oo
(0,0,20) 0,0,)pean) 18
w»’m(,/ 'M\\ 200 f——————————+— 20: _
’\\/ /4( \m‘\m””"" ‘E 100 ;\O\O\O\O\ON_H_Q :
—0.62651 eV —0.25960 eV |_|I2_|' - Ty 1
<] 100 J
(0, 0, 24) (Oa 0, x)D(?S) 200 1
‘.\\\\Wf// ]
A % ‘M , 100 |
AT -
- J
—0.36329 eV —0.21259 eV 100 ]
(0,0,28) (0,0,2) (s 2°° -
My | -
Wz T\ R B T IR
TN Z 00 "
:. FIG. 7. Energy spac_ings between qeighboring state's_ ins_ide the polyads
—0.10346 eV —0.12501 eV Egi‘g]_fg?tﬁ? I'a:;v]:sntcst(;r;eom, wheren indicates the position in the polyad
R

FIG. 6. Wave functions of the pure overtone states |),dleft-hand col- . .
umn) and the dissociation states (&), (right-hand colump For further function at a lower contour level reveals that it has 7 and 9

details see Fig. 4. nodes, respectively, along tlve andv; “axes,” which are
indicated in Fig. 8. On the other hand, the assignments of the
n=4 state ofP=24 and then=2 state in polyad®=25 as
clear. The appearance of the wave functions for the next0,8,89 and (0,9,7), respectively, are not at all reasonable.
three higher states, however, is more involved, especially fofhe labels(0,8,8 and (0,9,7 merely indicate that at these
state(0,6,10. Making the same plot with a lower contour positions states with these assignments are expected. How-
level shows a slightly different nodal structure and in par-ever, such states are missing and their positions are occupied
ticular reveals that the assignment @s6,10 can still be by these new states. In order to distinguish the “new” states
justified. Nevertheless, the general appearance d(6e10 from the “normal” ones, we will assign them as
wave function is different from that for sta(@,7,8: Thereis  (v1,v,,X)pp, Where the abbreviation D stands for “disso-
a central “backbone” along which the amplitude is maxi- ciation” and the number in parentheses indicates the polyad
mal. Such a backbone is missing 16;,7,8. The wave func- this state belongs to. With increasing polyad quantum num-
tions for the higher states in this polyad,5,12, (0,4,19, ber combination states of the D type with one, two, and more
etc., have shapes, which resemble the nodal structures knomodes in the direction perpendicular to the main backbone,
from the states in the lower polyads. i.e., with excitation essentially in the bending mode, come
The particular shape of th@,6,10 wave function be- into existence, e.g., stat@,8,9 for polyad P=25.
comes more evident in the higher polyads: See, e.g., the The number of nodes along the backbones of these func-
wave functions for stat€0,7,9 for P=23, (0,8,8 for P tions is not identical to the polyad quantum numier~or
=24, and(0,9,7 for P=25. While the wave functions for example, the (0,8)p4 wave function for polyadP =24
states(0,6,1Q and(0,7,9 still show amplitude off the main has only 19 nodeglt, beyond any doubt, is not a member of
backbone, the wave functions for stai@8,9 and (0,9,7 polyadP=19.) Because of the mismatch between the polyad
are much more distinct, i.e., the amplitude outside the regioguantum numbeP and the actual number of nodes along the
of the backbone is marginally small. backbone, we replace the quantum numbgiby x without
The assignment of the fifthn=4) state in polyadP specifying the value ok. As beforey, is the number of HO
=23 as(0,7,9 is nonetheless justified: Plotting the wave stretching quanta and, refers to the number of quanta in
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the direction perpendicular to the backbone, basically thetates leaves the number of states per polyad intact; it is the
angular coordinate. There is another peculiarity. The numbestructure of the individual polyads, i.e., the wave functions
of nodes of the D states along their backbones does not neend the energy spacings between neighboring statesthe
essarily increase by one when going from one polyad to théollowing), that is considerably changed by the D states. The
next higher one. For example, the wave functions for statealterations become rapidly more severe with increasing en-
(0,0X)p(24 @and (0,0x) p(25 both have 19 nodes. Moreover, it ergy.
is possible that the number of nodes along the backbones is The evolution of the wave functions as illustrated in Fig.
identical for states (0,8)pp) and (0,1X)pp . The allocation 8 continues at higher polyads, namely some of the “normal”
to a particular polyad is only possible by carefully following states, which are well assignable in the lower polyads, dis-
how the spectrum and the wave functions develop from lowappear and at the same time new D states are born. Since the
energies to high energies and this requires one to inspe&l states advance along the dissociation path, they show a
each wave function state by state. considerable anharmonicity as indicated by the energy level
The D states clearly follow the dissociation path, i.e,spacing between adjacent (&)} states in Fig. &). The
they extend further and further into the H@I fragment curve of transition frequencies for the D states seems to be
channel when the energy increa$Ery. 2 and the right-hand the continuation of the curve for the (OvQ) states, i.e., the
panel of Fig. 6. They form a new family of states, which states which in the low energy regime have mainly OCI
does not exist at lower energies, but comes into existencstretching character. The extrapolation of the (08¢
abruptly at high energies. As we will show in Sec. V, the D curve to lower energies merges with the (04, frequency
states can be interpreted as the consequence of a saddle-nedeve aroundP~16—17 E~—0.9 eV), just in the region
bifurcation of the classical phase space. Details of the quarwhere the frequency curves for the states (&)0,and
tum mechanical/classical correspondence will becoméO,,,0) intersect each other, i.e., where the two transition
clearer in the two-dimensional studyThe birth of the D  frequencies are almost identical.
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The energy-level spectrum of HOCI becomes quite comare followed by a region in which D states and bending states
plex in the high-polyad regime. When the D states come int@lternate. The states in the middle of the polyad have an
existence aroun®=23-24, they are born in the middle of extremely complex nodal structure, whereas the top of the
the respective polyads. However, because of the large anhgrelyad again is governed by levels, which have the same
monicity, they quickly move to the lower endEig. 3). In  general behavior as observed in the lower polyads and the
polyad[0,2§] it happens for the first time that an (&P, assignment is rather clear. The highest stéd0,30, has
state is the lowest state in a polyad. From there on, more anghainly bending character, although the lowest members of
more states with D character and several quanta in the benthis progression started out to have excitation along the OCI
ing mode appear at the lower parts of the polyads. That thetretching degree of freedom.
upper end of a polyad overlaps with the lower part of the  There is a further detail worth mentioning. Tf®&15,0
next higher polyad does happen even at low energies, whergave function has a clear node along Beoordinate, which
D states do not yet exist. However, in the highregime it is in contradiction to the general building principle of the
occurs that several polyads overlap. For example, the uppgolyads, i.e., the wave functions for the statewv4@) have
part of polyadP=28 overlaps with states from polyads 29 no node in theR direction. Again, this effect has a counter-
and 30. This makes the analysis of the energy level spectruipart in the analysis of the classical phase space: At a period-
cumbersome, especially if the wave functions are not availdoubling bifurcation of the bending family of POs the PO
able. describing pure motion iny becomes unstable and a new

The problems related to the assignment rapidly grow astable PO is createdee Sec. Y. The latter one has the form
one approaches the dissociation limit. Actually, polyadof a very narrow horseshoe and it is this PO which scars the
[0,3]] is the last one fow;=0 that can be completely as- (0,v,,0) wave functions. The same effect also occurs in the
signed. The number of unassignable states quickly getdD calculations and is even more clearly conceivable tfere.
larger for energie€>0. In order to demonstrate the com- The emergence of the D states has a profound impact on
plexity of the wave functions at high energies we show inthe energy spacings inside the poly&Bg. 7). While AE is
Fig. 9 all wave functions for polyafD,3(]. The three lowest a smooth and monotonically decreasing function in the
states are clear-cut D states of the formvg0x)ps . They  low-P region, betweerP=16 and 18 a very shallow mini-
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mum develops in the top part of the polyads. With increasing
polyad quantum number this minimum becomes more pro-
nounced and gradually shifts toward the bottom of the
polyad. The location of the minimum in the intrapolyad en-
ergy spacing is closely related to the (&)Qyp States. For
example, forP=22 the minimum is ah=6 and the D state —
in this polyad is the sixth state; fd&®=24 the D state is the —0.99876 eV
fifth state of this polyad and the minimum occursat4. As

(0,8,0)

P increases the D states rapidly move to the bottom part of (2,8,0)
the polyads and so does the minimum in the intrapolyad —. : =
energy spacing. The “fluctuations” for the higher polyads, ‘ ==

P =26 for example, are the consequence of the occurrence of v :; S

more than one D state and their alternation with the “nor-

mal” states(Fig. 9). —0.58188 eV —0.18866 eV

The minimum begins to develop in polyafs=16-18.
This is exactly the region in which the mixing betweeand
R at the top of the polyads gets large because of the almo$&tG. 10. Examples of\(;,v,,0) wave functions in ther(y) plane. They
perfect degeneradgee Fig. 5. As previously discussed, this axis ranges from 1° to 179° and theaxis ranges from 1&) to 3.5,.
is also the region in which the D states begin to come into
existence. States with a clear-cut “dissociation” behavior do . . . .
not show up befor®=21. However, an extrapolation of the >33 IS respons@le for the success of the two-dimensional
(0,0X)0m frequency curve to lower polyads suggests thatmodel in reprod_ucmg.— and explaining — the results of the
first indications already occur as earlyRs 16—18. In other present three—dlmenspnal stutly.
words, the intrapolyad energy spacing is a very sensitive Although the coupling between on the one hand, arfd

probe of the saddle-node bifurcation through which the Dand y,'onFt'he %her,rl]s weak, '; IS .n(t)ttﬂegl|g|ble.fThlst'can l;e
states are born. The relation between a minimum in the in>¢€" N ™19 » Where we depict the wave functions for

trapolyad energy spacing and saddle-node bifurcations ha%ates(o,&(_), (18,0, and (2,80 in the (r,y) plane. The
been previously discussed by Svittcal ”2 for a model reso- wave function for stat€0,8,0 shows an undulatory behav-

nance Hamiltonian and by Joyeex al’® for HCP. It is in- ior, which is characteristic for a 3:1 resonance systéra,,

teresting to note that well below the resonance regidn,is one quantum of HO. stretch IS Worth three quanta of the
a monotonically decreasing function mfwhile in the higher bfendmg mode. As will be d|scusseq n t_he Sec. V, the pre-
polyads, when the resonance behavior is fully developéd, cise shapg Of. th? (92.0) wave fur_muon; n th.er( 7) plane

monotonically rises withn, except for the fluctuations at the is helpful in finding those periodic orbits which correspond

bottom of the polyad. A detailed analysis is given in Ref. 330 the qF‘a”‘“”? wave functions. The wave fun'ctlons for the
states with excitation in show a different behavior; they are

slightly bent without the characteristic 3:1 resonance behav-
ior.

r

C. Polyad structure for v,=0 V. ANALYSIS OF THE CLASSICAL PHASE SPACE

Up to now we have only discussed the polyad structure  The structure of the quantum mechanical spectrum and
for states in which the HO moiety is not excited;=0.  particularly the shapes of the wave functions can be eluci-
Because of the weak potential coupling betweeon one dated in terms of the structure of the classical phase space
hand andR andy on the other, and because of the relativelyand special trajectories therein, so-called periodic orbits
large mismatch of the fundamental frequencies,/v, (PO3.1874POs are classified as stable or unstable depending
~1,/2v3~3, the HO stretching motion is to a large degreeon the eigenvalues of the monodromy matfixtor many
separated from the motions Rand y. As a consequence, systems it has been demonstrated that the “backbones” of
the polyad structures far;=1 and 2 are almost replicas of quantum mechanical wave functions closely follow certain
the spectrum fow; =0, merely shifted by the corresponding stable PO$® HOCI is a particularly illuminating system for
excitation energies. This general behavior is, for exampleillustrating the close correspondence between the phase-
confirmed by the frequency curves foy=1 and 2 in Fig. 5.  space structure and the quantum mechanical spectrum, all the
The point of intersection of the curves for the two progres-way from the bottom of the potential well to the dissociation
sions (1,0v3) and (1y,,0) is shifted by about 4600 cii to  threshold.
higher energies with respect to the curves with=0. As a Despite the remarkable simplicity of the quantum me-
result, the D states occur at energies very close to the dissahanical spectrum up to high energies, the structure of the
ciation threshold. The point of intersection is further shiftedclassical phase space is quite involved already at low ener-
to higher energies for two quanta of excitation of the HOgies. Near the bottom of the well there are three types of
mode; D states witlr;=2 occur only in the continuum. The POs, the principal families. They are denoted [by; [ v],
weak coupling between HO stretching motion and the otheand[R], respectively, because the POs basically describe mo-
two degrees of freedonftogether with the fact that;  tions along the three coordinate axes. Instead of showing
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FIG. 11. Comparison of selected POs and the corre-
sponding wave functiongtwo-dimensional contour
plots; the third coordinate is integrated onefa), (b)
The solid (dashedl lines represent orbits of th[a}]
([y]) type; (c), (d) the solid (dashedl lines represent
orbits of the[R] ([R]) type; (e) the solid line represents
an orbit of the[D] type; (f) the solid line shows an orbit
of the[y"] type.

individual POs we present in Fig.(d the corresponding of POs remains stable up to energies well above the disso-

frequencies as functions of the enerdgontinuation/ ciation threshold and although they seem to follow the back-

bifurcation diagrarff). In order to simplify the presentation, bone of the (04,,0) wave functions in theR, y) plane[Fig.

the frequency for thér] family is not shown. In accordance 11(a)], they do not scar the (@;,0) wave functions: The

with the quantum mechanical results in Fig$a)55(c) the  behavior of the wave functions in the,) plane [Fig.

frequencies of thg y]-type orbits are divided by two. All  11(b)] is not properly described by tHey]-type POs.

classical curves are shifted by 0.23 eV, the estimated quan- In the same energy range, where the]-type POs

tum mechanical zero-point energy in the HO stretching modghange their structure{1.95 eV}, the first saddle-nodeésSN)

at the equilibrium configuration, to higher energié®Repre-  bifurcation is found. The stable branch of this bifurcation,

sentative examples of POs and the corresponding wave fungzhich is denoted bjy] in what follows, has POs with small

tions are depicted in Fig. 11. . , excitation along the coordinate — for low energies as well
The[r]-type POs(not shown exist up to very high en- ¢ tor high energies. As Figs. (1 and 11b) indicate, it is

ergies, far above threshold, and they are stable for the entir ~ . .
energy regime studied. The general structure of these orbi Ee POs of the y] family which scar the (8;,,0) wave

does not change as energy increases. The behavior of tfignctions. The[y] POs are stable up to about0.4 eV,
POs of the other two principal families, however, is moreWhere a Berlod-doubllng bifurcation occurs. At this bifurca-
involved. tion the[ y] branch becomes unstable and the new branch,
In contrast to thdr] orbits, the[ y]-type POs very early labeled by[y "], is stable, at least initially. At still higher
change their qualitative morphology: As energy increases thenergies this branch goes through several additional bifurca-
HO mode becomes excited, as is seen in Figbiithe tions and eventually also loses its stability.
dashed ling and the degree of excitation grows with As previously mentioned, the pure bending wave func-
These changes start around..95 eV(including the 0.23 eV  tions (Oy,,0) change their shapes at high energies, i.e., when
shift to higher energigsand are the consequence of the 3:1v, is larger than 13 or so. While at lower energies the
resonance between the HO mode and the bending modg&,,,0) wave functions do not have a node in Realirec-
This resonance has only a small effect on the quantum meion, in the high-energy regime they develop excitatiorRin
chanical wave functions, but seems to influence the classic@Fig. 11(f)]. The structural change of the wave functions is
trajectories more strongly. However, although fthg family reflected by the change of the slope of the
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(0v2,0)-frequency curve near0.25 eV in Fig. &c). The  the HO mode, and therefore do not guide the Q&
high-energy (04,0) wave functions are scarred by the POswave functions, which do not show excitation along the
of the[y"] branch, which have the shape of a very narrowcoordinate. It is plausible to assume that the abrupt change of
horseshogFig. 11(f)]. Because of the splitting into two the[R] frequency and the corresponding changeover of the
branches, the period of tHey"] orbits is about two times morphology of the orbits at the SN bifurcation near.4
longer than the period of thiey]-type POs(period-doubling eV, on the one hand, and the changes of[tbg] frequency
bifurcation; accordingly, the frequency is lowered by a fac- curves and the change of the character offthg|-type tra-
tor of 2. (Actually, in order to compare with the correspond- jectories, on the other, have the same origin, namely the
ing quantum mechanical frequency curve, the frequency ofesonance betweerandR. While the former SN bifurcation
the [y*]-type orbits should be multiplied by twoThe is the result of a 6:1 resonance, the SN bifurcations of the
horseshoe becomes increasingly wider with increasing er-D;] families are caused by 8:1, 9:1 resonances, etc., as the
ergy. At still higher energies these POs also become unanalysis of the unstable trajectories in th& ) plane indi-
stable, which explains why no clear-cuty{g,0) wave func- cates.
tions exist above 0 eV or so. It is not surprising that the families of periodic orbits,

The POs of théR]-type principal family are also stable Which are associated with excitation inappear at energies
up to very high energies. However, there is a sudden chang¥ which ther mode tunes into resonance with the other two
of the frequency around-1.4 eV and at the same time a modes. Of course, a mode which is almost separated from
change of the character of these orbits. While belew.4  the other two modes classically can be excited at any energy
eV the [R]-type orbits have no significant excitation in ~ — one simply has to put some amount of energy into
above this energy they show substantial excitation in the Havhere it will stay because of the separability. However, the
stretching mod¢see Fig. 11d) (dashed lined, which grows resulting trajectories would be only quasiperiodic rather than
with energy. A careful analysis of the eigenvalues of thefully periodic. A given trajectory is periodic if the number of
monodromy matrix shows that the POs belonging to the twéycles in the(separablemoder is a multiple of the number
apparently different parts of the frequency curve are memof cycles in the R,) plane and this means that thenode
bers of the same family. TH&]-type orbits change abruptly is in resonance with the other two modes. This explains why
their character. The cause of this transition is the almosthe [R] and[D;] families have SN bifurcations at specific
exact 1:6 resonance between theoordinate, which was €nergies. The amount of energy put into thenode along
basically unexcited up to this energy, aRdAbove — 1.4 eV these special periodic orbits does not correspond to one
the additional energy is to a large extent channeled into quantum of HO stretch vibration and therefore quantum me-
motion, while the energy contained iR increases only chanics totally ignores these bifurcated branches. A similar
slightly. Figures 1{c) and 11d) clearly show that the sif[uation was previgusly discussed in Ref. 73 in connection
(0,0v3) wave functions do not follow thgR]-type POs. with the PO analysis of HCP. S

At the energy, where the resonance betwBemdr sets The classical continuation/bifurcation diagram looks
in, a second SN bifurcation emanates, the stable branch gfuch more complicated than its quantum mechanical coun-
which will be denoted byR] in what follows. The orbits €"Part in Fig. &). If only those branches, which apparently
belonging to this manifold have the same character as thcorrespond to the quantum mechanical curbieighlighted

POs of the[R] family below the SN bifurcation. In particu- E/?/let:rllcriers“rg)s ;2 dFlﬂ\gcj) ?i/gm\év%r: rgﬁ\gr;vitggn?nsg?gnﬁz:
lar, they do not have substantial excitatiorriand therefore gs. '

) . I we al how th ranches, which not affect th
are believed to scar the wave functions of the (@D pro- €ss, We &S0 Sho ose branches, ch do not affect the

) ; - - quantum mechanical wave functions of the overtone states,
gressior{Figs. 1Xc) and 11d)]. The[R] branch is stable up  pecayse they are the high-energy continuations of those seg-

to the highest energy considered. It seems to be the highpents which at lower energies do influence the quantum me-
energy continuation of the low-energy branch of fR¢fam-  cpanjcal states. All of these branches have one feature in
ily. _ common, i.e., significant excitation of the HO mode. As a
The sudden change of the frequency of [Rg family  resylt of this, their anharmonicities are similar to that of the
and the occurrence of the SN bifurcation, at which fRd  [r] branch. The continuation/bifurcation diagram obtained in
orbits are born, is to some extent replicated at higher enethe 2D model, in which the HO vibration iadiabatically
gies: There is a whole cascade of SN bifurcations. The cordecoupled, is much simpler and resembles very closely the
responding trajectories will be denoted fp,], [D,], etc.  corresponding quantum mechanical picttite.
All frequency curves of thg D;] families have a similar In previous applications of PO analysis to molecular
pattern, that is, a short branch with large anharmonicitysystem&>’8"®we observed SN bifurcations to occur mainly
which appears to be the extrapolation of the low-energy segaear energies, where the topography of the potential changes
ment of the[R] family, and a second part, for which the drastically, e.g., near a barriefHCN®®) or a “kink”
slope is smaller, approximately the same as for[thdam-  (HCP'). In these cases, the principal families continue to
ily. The trajectories belonging to the first branch are stableexist with the corresponding POs gradually changing their
have no excitation im, and scar the (0,9)pp Wave func-  morphologies; the new regions of phase space, which be-
tions, which is the reason why we term théb, ] orbits. On come accessible, are explored by the POs of the SN families.
the other hand, the trajectories belonging to the second se$tCP is a well-understood exampf&The situation is differ-
ments are mainly unstable, show considerable excitation aént for HOCI. First, the PES does not have a characteristic

Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



90 J. Chem. Phys., Vol. 112, No. 1, 1 January 2000 Weil} et al.

feature like a barrier, at least not in the energy regime studied ' ' ' '
in the present investigation, which underlines that SN bifur-
cations do not require drastic changes of the PES. Second, at o 8 0, % %
the SN bifurcation the POs of the principal families change
drastically by penetrating into a new dimensi@ghn and the
emerging SN orbits explore those regions of phase space
which before the SN bifurcation are sampled by the principal
families. A more detailed analysis of this development will
be published at a later date by investigating a two-
dimensional modelcoordinatesR and y), in whichr is
treated as a second control parameter in additioB. to

VI. UNIMOLECULAR DISSOCIATION

In Secs. IV and V we analyzed the evolution of the
bound states up to the dissociation threshold and showed
how they are affected by SN bifurcations of the classical o
phase space. In this section we will discuss the implications
of the bound-state structure for the fragmentation above the
HO+CI threshold. The link between spectroscopy, on theFIG. 12. Resonance widtts as a function of the excess enerfy. The
one hand, and kineticé.e., unimolecular dissociationon widths for states which are mainly Io_calized in the region of the potentie_ll

. . . ell are represented by the closed circles and the widths for states which
the other, are resonances, that is, qua3|b0und states In t end far into the fragment channel are indicated by the open circles. The
dissociation continuum. In scattering theory, resonancesolid line is the width estimated from SACM theory and the dashed line
emerge as poles of tf@matrix3! In our calculations, based represents’n.(Eo) defined in Eq(13).
on Feschbach’s optical model, resonances are approximated
by the eigenvectors of a complex-symmetric Hamiltonian
(see Sec. I)l. This Hamiltonian differs from the one used in will refer to the first group of states as quasibound states and
the bound_state Caicuiations by an imaginary absorbing pdjenote the resonances W|th wave fUnCtionS Signiﬁcantly pen-
tential term. As such, each resonance is uniquely charactefirating into the product channel as “d” states in what fol-
ized by a complex wave function and a complex eigenenlows. The states denoted by (,v,,X)p previously are a
ergy, Eo—il'/2. The real part determines the position of thesubgroup of the “d” states. The distinction of the two
resonance on the energy axis what follows E, is the en-  groups is, of course, not completely unambiguous. All cal-
ergy in excess of the dissociation threshpkhd the imagi- ~ culated resonance widths are depicted in Fig. 12.
nary part gives the resonance width. The resonance lifetime Most of the quasibound states have widths below 1
is given by r=#/T, and the dissociation rate is defined asCm *, which corresponds to a lifetime of the order of 5 ps.
k=71 Many of them have a clear-cut assignment in terms of quan-

An overview of the dissociation dynamics of HOCI was tum numbers¥,v,,v3) in the same way as the true bound
already given in Ref. 23, where we calculatedth a differ- states[Fig. 13a)]. All assignable states have at least one
ent method than the one employed in the present ik
resonance widths in the region from the threshold up to

200 300
Eolcm™]

400 500

about 4000 cm! above it. The main finding was a pro- a

nounced state dependence of the unimolecular decaykwith
fluctuating over seven orders of magnitude. A detailed analy-
sis of this wide distribution was not the aim of that initial
survey study. In the present work we attempt to rationalize
the strong state dependence of the resonance widths and to
this end analyze the resonance wave functions and relate
their structure to the magnitude of the dissociation rate. For
convenience, only a narrow energy range of about 500cm
above the threshold is considered. Each of thE60 eigen-
functions is visually inspected and assigrfedien possible
A complete list of the calculated resonance energies, widths,
and assignments can be obtained from one of the authors
(R.S) or electronically”®

The resonances can be roughly divided into two groups:
Those whose wave functions are mainly confined to the re-
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gion of the potential well—with only small amplitudes in the FIC- 13. (a>—f(d) ngf‘itedl 798>iam%'et;é°f fesonance wave fUtnCtEi_)OE; Fhe
exit channel and those whose wave functions extend far o> Bnde o - 0 = o e cocs oo & t0 5.4,
. . - . e two numbers in each panel are the excess ertgygyd the width (in
into the dissociation channel, in many cases even to thgracket$ respectively, both given in cit. The wave function inc) ex-

boundary of the grid. In order to simplify the notation, we tends far beyond the range shown.
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guantum stored in the weakly coupled HO stretching modestates are undisturbed by the exponential growth for which
As previously mentioned, the spectra for different values ofR* exceeds the potential radius, that is — in practice — the
v,=1 are to a large extent replicas of the spectrumvpf boundary of the gridR,,.x. The conditionR* = R, defines
=0. Thus, exciting HO by one or several quanta promotes a maximum resonance width, which a state may have with-
considerable number of states with clear—cut assignment intout being affected by the exponential divergence,

the continuum without making the excess energy directly B

available for the dissociation mode. In other cases the assign- Fmal EO)%ZhVZEO/MRRmix' (13
ment is not at all cleafFig. 13b)]. Such states typically
have many quanta in modes 2 and 3 and relatively larg

\é\{|dths_.t Th.?h\’;'dt?s ?.f the quaS|boun|d s(tjates ?how qtg(rje idth corresponds to the time a particle, ballistically ejected,
Iversity with fluctuations over several orders ol magnitu e'requires to fly across the grid. This estimation suggests that

Because of the very narrow energy interval studied, it is Nojy o interpretation of poles witli>T .., as “metastable”

possible to investigate Ior;ger “progressions” of resonanceg,ias is rather symbolic. For HOCI, a typical valuelgf,,
like for HCO, for examplé? Nevertheless, some conclusions close to the thresholdEp=10 cmi 1) is 2 cni L, while for

can be drawn. The lower bound of the distribution is formedz 5y . \+1 2hove the threshold ,,~14 cm . The large

by the states with strong excitation in the HO mode anqeduced mass of the HO—CI system cauEes, to be so
X

weak excitation in the other two modes. Their width can be . . . .
; _~-small in the present case. The cuily is depicted in
as low as 108 cm™1. It must be underlined that states with b Ra{Eo) P

| I 6 d ; iiv h | i it Fig. 12; for comparison, the widths according to the statisti-
arge values ovs do not necessarily have 1arge dissoclalion .| 5 qiapatic channel model of Quack and Pfoare also
rates. As previously discussed, the (04, states are

v bent in th | : h id the di shown. Of course, the one-dimensional estimation(Eg).is
st.rong.y . entin the R,) plane, i.e., they avoid the .|r.ect only an upper limit. All the quasibound states have widths,
dissociation path, and therefore they do not couple eff|C|entI3(Nhich fulfill the requirement’ <T,.,.. A more rigorous way

toblthetc?ntlguum.bStrongljly ﬂucw?“(?% W'Sdkthl‘:’ foréhe assign-r,, distinguishing the real resonance states from direct scat-
abie stales have been aiso reported by skokov, Bowman, a@gring states would be to perform calculations for different

Mandelshtarit in their study of the HOCI dissociation. grid boundaries and to analyze how the various pole energies

The resonances bqungmg_ to the_ d” group "_‘“St bevary. This is a very time consuming procedure and has not
analyzed with great caution. Since their wave functions ®Xpeen done here

tend with large amplitude into the dissociation channel, in
many cases they must be interpreted as “direct scatterin

states.” In contrast to the quasibound states, their widths arg
difficult to converge with respect to the parametéoaset

The square root in this equation is the velooity of a free
article with masgwg and energye,, and thus the maximum

A typical wave function for a state with~T",,, is de-
icted in Fig. 18c). It stretches all the way to the boundary
f the grid. Although the HO mode is not excited, it has a
) . . regular nodal structure in thRe coordinate, and excitation in
and strength of the optical potential, especially for those the local bending mode can be clearly distinguished. Because

states who‘?e”wave functions reach the gnd.of the grld. B&ave functions of this type are so similar to those shown in
cause the “d” states have strong excitation in the d|ssoua-|:ig 6 (right column, we believe that these states are the

tl(_)gthmodfe,ththe W'dFSS a:je gzetnegalhl/ mui:? larger t%a]m th(?:ontinuations of the boundvg,v,,v3)pp states into the
widths of the quasibound state§ 1 cm™= or s9. The continuum. Their lifetimes are nearly ballistic or even

reason why we do not eI_|m|_nate_ them from the present d'_s'smaller. The D states just under the threshold are kept bound

cussion is their close similarity with the D states discussed 'Q)nly by a tiny potential force at large interfragment dis-

grea: detalrl]ln the prewfours] S(;,;ctlons. le of the G s f tances. Several wave numbers of additional energy in the
rough estimate of whether a pole of the Green's UnC-yigq 4 ciation mode are enough to smoothly transform them

tion represents a meaningful resonance state or not can l?ﬁto quickly dissociating states. A similar effect was recently

dgnvegl as follows. The wave number, cprrespondmg to th%bserved in model studies of the near-threshold dissociation
dissociation modeR, for a complex eigenstate is also of NO,.%

83
complex, Nevertheless, there are also a few states of the “d” type

1 with widths well belowl" ., and which can be considered as
Kr=7V2ur(Eo—il'/2). (12 quasibound states. They have at least one quantum of HO
stretch. Because a substantial amount of energy is stored in
Thus, the outgoing wave, e3xpgR/%), contains an exponen- the weakly coupled mode, their lifetime is comparatively
tially growing admixture, which for a narrow resonance haslong. These states are bound with respect to the \HO(
the form exp+ (ur/8Eo)Y'R/A]. This term becomes sig- =1) asymptote and can decay only by a nonadiabatic tran-
nificant at a certain “critical distance,R=R*, at which the sition tov,;=0 manifold, in a similar way as previously de-
exponent is of order of unityR* is a function of the reso- scribed for HCG® A wave function for a typical example is
nance width and the excess eneEgyy The broader the reso- shown in Fig. 18d). Except for a small-amplitude tail it does
nance and the small&y, the smaller iR*. If R* liesinthe not extend to the grid boundary and has exactly the form of
inner part of the potential, the divergent term strongly affectghe (v;,v,,v3)pp bound-state wave functions.
the wave function and an assignment consistent with the as- The extreme state specificity of HOCI is mainly due to a
signment of bound states cannot be made. In contrast, wavack of coupling between the modes. If the coupling were
functions withR* lying in the asymptotic region can be ana- stronger, the dynamics would be more irregular and the wave
lyzed as if they were bound. Rigorously speaking, only thosdunctions would look — on average — more alike. As a
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consequence, the dissociation rates would not vary as mudipend and S.C.F. and R.S. are grateful to the Alexander von
as for HOCI. The dissociations of HN®and NG, (Ref. 87 Humboldt-Stiftung for a travel grant. A large portion of the

are typical examples. calculations was performed by use of the CRAY T3E paral-
lel computer of the Gesellschaft rfuWissenschaftliche
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