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The inversion mechanism of a T-shaped /A studied both classically and quantum mechanically.
Regular states, localized in the region of the transition state for the inversion of the axial argon atom
are found and are assigned by the symmetric stretch stable periodic orbits which emanate from the
saddle point of the potential. These states inhibit the inversion process. States which promote the
inversion are mainly irregular, but a few of them are localized and they have their nodes
perpendicularly arranged along periodic orbits which originate from saddle node bifurcations. The
two types of periodic orbits, inhibiting and isomerizing, are used to produce distinctly different
spectra and to extract the corresponding eigenfunctions by solving the time dependedirgeinro
equation using a variable order finite difference mettidd Chem. Phys111, 10827 (1999,
preceding papgr © 1999 American Institute of Physid$$0021-96069)30247-6

I. INTRODUCTION existence of stable domains in phase space embedded in a
usually chaotic region. The correspondence of stable peri-
One elementary chemical reaction is the inversion of &dic orbits to quantum eigenfunctidhgictates quantum me-
molecule. Generally, inversion may be seen as an isomerizghanical localization as well.
tion reaction between two equivalent minimum energy con-  |n double well potentials, periodic orbits which connect
formations which correspond to two symmetric minima onthe two minima are mainly associated with SN bifurcations.
the potential energy surfad®ES. Isomerization occurs by e have shown this for boufifl and unbounfl molecular
exciting the molecule to a vibrational state which has appresystems. A recent example with a spectroscopic signature for
ciable probability amplitude in both minima. At energies the SN states is the HCP moleculispersed fluorescence
where the molecule isomerizes the motions of atoms are e¥nd stimulated emission pumpingibrational-rotational
pected to be irregular because of the nonlinearity and COUspectroscopy® of the bending mode has shown that the ro-
p|il?|g of th'e pptential functiohclose to and above the barrier tational constants are different for the normal mode type
of isomerization. bending stategstates associated with the minimum of the
The progress of high resolution spectroscopy at excitefhntentia) and the isomerizing bending states. Although
vibrational states in the last years reveals that, contrary to oWy, initio calculations for the ground electronic state of HCP
expectations, spectra at high energies can be analyzed willyoict a saddle point for the CPH conformation and not a
simple spectroscopic models in reduced dimension si’:)aceminimum' it has been demonstrated that the vibrational states

These models are described by resonance Hamiltoniangy,qp, |eaq loosely speaking to isomerization of the hydro-

which have regular localized eigenfunctions, and this €XJen atom from the carbon to phosphorus side are associated

plains the regular patterns frequently found in vibrationallyWith SN periodic orbitd®-12

excited spectra. Homonuclear triatomic molecules,;A can also show

i Stﬁmmlafssu:til alppro|>.<|mt§at|onsf fﬁ emto prfov'dte. a Satlffa‘%hversion of the axial atom with respect to the-A bond. In
ory theory Tor the localization of the wave TUnclions. ar ;. case, the transition state is a collinear configuration with

ticularly, it has been found that periodic orbits may be use he axial A atom sitting in the middle of the-AA bond. An

as diagnostic tools for the localization in quantum . S .

; : . example is H , for which it has been shown that localized
mechanicg.Regular wave functions have recognizable nOdaIisomerizin states exist and are marked by similar tvoes of
structures which follow the patterns of periodic orbitSor 9 Y yp

) Lo o ) . Jperiodic orbit named “horseshoée™®
high vibrational excitations of particular interest are thos The der Waal tem Ais anoth le which
periodic orbits which emerge from saddle nd@&N) bifur- van der Waals system £Ais another example whic

cations. These periodic orbits appear suddenly in phase spa‘&gn show inversion .Of the axial Ar atom. The weak forces
among the atoms dictate that the molecule executes floppy

as pairs of one stable and one unstable family. This is ims: . ) ,
portant, since the emergence of a SN bifurcation signals th regular motions. Early studies on this system revealed that
the trajectories even close to the minimum have positive

Lyapunov exponent¥:*® However, more recent classical

dAlso at Department of Physics, University of Crete, Iraklion 711 10, Crete, mechanical studié&l” have shown a nonstatistical inversion
Greece.

YAlso at Department of Chemistry, University of Crete, Iraklion 711 10, dynamics in sp_ite Of_ the f_aCt that the ph_ase space is domi-
Crete, Greece nated by chaotic trajectories above the inversion threshold.
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Vibrational quantum mechanical calculations for the rota- 2
tionless system have recently been presented by Wright an
Hutson'® What is surprising in these calculations is the regu-
larity and localization of a few eigenfunctions above the bar-
rier of inversion found among irregular eigenstates with no
recognizable nodal patterns.

In this article we want to investigate more thoroughly =
the inversion dynamics and spectroscopy of the van der(g'
Waals system, Ar. Thus, we apply the periodic orbit *
method(POM) introduced beforé.Families of periodic or-
bits which originate from the saddle point of the potential
function as well as saddle node bifurcations are located tc
explore the structure of phase space in regions where inver
sion takes place. These periodic orbits are then used to guid
wave packets which are propagated by solving the time de- 33 5 3 5
pendent Schidinger equation. The important role of the ini- x1(au.)
tial phase of the wave functiortassigned by the momenta of FIG. 1. Potential energy contours for thesAnolecule between 50 and 300

POs results in completely different spectra produced at high (1 K=0.695 cmr%). In the inset the molecule with the coordinate system
energies, where wave packets with the same amplitudes bistshown.

different phases serve to excite the molecule in different
modes.

V.V(? apply a new algorithm and .recent |dea_s on high or- Methods for locating periodic orbits have been described
der finite difference methd@to obtain the solutions of the bef

. ores“ Usually, a quasi-Newton method is employed to
Schralinger equation which are then compared with the res; ¥, a g POy

Its of fast Fouri d tral calculati Th énd the proper initial conditions for closing the trajectory.
SUlls of Tast Founer pseudospectral calcuiations. 1Ne CUVeR, yeyer we are interested in locating families of periodic
shape of the potential function leads the finite differenc

Corbits for a range of energies. Thus, continuation methods

mt_athoq toa superior pos_ition singe it allows us to choose th‘E;'\re equally importarf® Through continuation of the princi-
grid points in an energetically optimum way and to apply thepal families, i.e., families which emerge from the stationary

appropriate boundary conditions. Details of the finite differ—points of the potential, we find bifurcations, and gradually

ence methods are presented in the companion pdper. we unravel the structure of phase space for a domain of total
energies. The stability properties of each periodic orbit, i.e.,
the behavior of the surrounding trajectories with time, are

Il. NUMERICAL DETAILS then examined by calculating the eigenvalues of the mono-
dromy matrix?42°

Both classical and quantum calculations are performed  gpectra and quantum mechanical wave functions are cal-

for C,, geometries of the three argon atoms using the Hamilyjated by solving the time dependent Saitiger equation

tonian: using the Fourier pseudospect(®S method® and a fast
p2 p2 and numerically robust variable order finite differen&®)
H= ﬂﬂL 21, +V(X1,X7). (1)  method. Using recurrence relations for the Lagrange interpo-
1 2

lation polynomials a general algorithm for computing any
X4 is the position of the axial argon atom along a perpendicuderivative of a function at arbitrary points and at any order of
lar axis to the middle of the bond lengtky, of the other two ~ approximation have been presented by Fornbgfg.This
argon atomsgu, is the reduced mass of the axial argon atomallows us to check systematically the convergence of the
with respect to Ay and u, the reduced mass of Ar The  spectra by increasing the order of approximation of the sec-
potential functionV(x4,X,), is determined from the sum of ond derivatives. It can be shown that FD methods at the
the three Ar—Ar interactions. The latter are described by thénfinity order of approximation are equivalent to spectral
empirical potential of Aziz and Slaméh. methods. However, the desired accuracy is achieved for fi-
The same potential has been used by Dumont and®ainnite orders and this makes FD methods competitive to pseu-
in a classical statistical study of the inversion dynamics. ltdospectral techniques. As the number of degrees of freedom
supports two symmetric minima accessible through thencreases the flexibility of choosing the grid points according
inversion process. The minima are atXxq(X,) to physical criteria makes FD methods superior to pseu-
=(*6.15,7.099%, the energy of which is taken to be equal dospectral techniqué$.This is demonstrated even for the
to zero. The saddle point between these two minima has thgresent 2D system for which rectangular grids, usually em-
collinear geometry of X;,x,)=(0.0,14.195,, and energy ployed in fast Fourier transform methods, will lead to an
140.38 K above the minimum. The energies are measured iimefficient configuration space sampling.
Kelvin.'® The dissociation limit to At-Ar, is 286.415 K. In Some ways to optimize grids with FFT algorithms have
Fig. 1 we show contour plots of the potential function cov-been proposetl but they are less general and not as easy to
ering the energy range between 50 and 300 K. In the insettandle as a FD procedure. Finite differences not only offer
the coordinatex; andx, are defined. flexibility in grid sampling, a property which is shared with
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FIG. 2. Continuation/bifurcation diagram for the principal family emanating / \\\ // N

from the saddle point of the potentigd family) and some saddle node POs
(I families). Solid lines denote stable POs and dashed lines unstable ones.
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the discrete variable representatiBVR) Pseudospectral
~

methods, but also result in having a smaller number of non- AN Ve
zero Hamiltonian matrix elements than DR This is also

in the spirit of other local and semilocal methods such as the S
distributed approximated functiongBAF).3* Numerical de- / N
tails of the implementation of FD method in Aare given in

the next section.

) e S4A

IIl. RESULTS AND DISCUSSION x1

A way to represent families of periodic orbits as the tOtaIFIG. 3. Representative periodic orbits projected on the configuration plane.
energy or other control variables change are viarhe potential contours at the same energy with the PO are also shown.
continuation/bifurcation$C/B) diagrams. These are plots of
the initial conditions of the periodic orbits or their periods as
functions of the total energy. Generally, C/B diagrams revealinstable to stable two new unstable families tB824,S1B)
the stable and unstable regions of phase space, and thus, theg borr?*?>3*The stability island which is formed around
provide global information about the dynamics of the mol-the stable periodic orbits makes the isomerizing chaotic tra-
ecule. Their importance in molecular systems stems in thgctories to be trapped around this region of phase space for
expected correspondence among stable and short period peiong time, something which is manifested in the inversion
riodic orbits and quantum mechanical eigenfunctions. dynamics with the deviations from the statistical

Continuation/bifurcation diagrams are constructed forbehaviort>1®
each stationary point of the potential function. The existence In the diagram of Fig. 2 we can see the bifurcation of
of the principal families of POs which originate from the other families as well as the change $back to unstable
stationary points are guaranteed by Weinsteimd Moset®  POs at energy 390 K. Plots of representative POs are shown
theorems. Since here we are interested in the inversion dyn Fig. 3 and initial conditions for one periodic orbit of each
namics of Ag, we discuss the C/B diagram of the saddlefamily are stored in Table I. It is interesting to note the
point of the potential. simultaneous bifurcation of four new familieS3. The S3A

There is one principal family which emerges from the andS3C POs have the same projection on thxg,k,) plane
saddle point. In Fig. 2 we plot a projection of the but they have a reflection symmetry,(,——p;,) when
continuation/bifurcation diagram, the initia] coordinate of they are projected on a coordinate-momentum plane.
each located periodic orbit versus the total energy. Continu- The other class of POs with physical interest is this
ous lines denote stable POs and dashed lines unstable P@gich emerges from saddle node bifurcations and a few of
The periodic orbits of the principal family correspond to thethem are shown in Fig. 2. We use the symHddisl 1, | 2, etc.
symmetric stretch of the three atoms in collinear configurato denote their association with the inversion. Indeed, the
tion. The principal family is denoted bg in Fig. 2 and is saddle node POs are those which connect the two minima
initially unstable in the direction ok, axis. Interestingly and the symmetric ones can easily be found. They appear
enough, this family turns to stable POs about 10 K above thalways with two branches, one stable and one unstable. The
saddle point. At the critical energy where tBaurns from  stable one may turn to unstable shortly after its generation
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TABLE |. Energiesk in Kelvin, periodsT in time units, and distances in Bohrs for selected periodic orkits the real part of the eigenvalue of the
monodromy matrix. 1 time unit 7.638 185 ps.

E X1 X2 P1 P2 T A
S 355.193 020 0.0 14.186 500 0.0 7.041 294 0.436 900 -—0.618740
S1A 150.009 681 0.884 718 14.186 500 0.351 702 1.417 406 0.398 700 1.271 292
S1B 150.009 681 —0.884718 14.186 500 —0.351702 1.417 406 0.398 700 1.271 292
S2A 240.391 374 1.007 793 14.186 500 1.566 077 4.586 023 1.493 700 0.987 384
S2B 240.559 217 —1.006 265 14.186 500 —1.187 946 4.674673 1.494 700 1.175 233
S3A 355.056 362 0.811 452 14.186 500 2.029 015 6.810171 1.289 199 0.977 896
S3B 355.054 526 —0.727 657 14.186 500 —2.353375 6.733 869 1.290 099 1.228 331
S3C 355.056 362 —0.811452 14.186 500 —2.029 015 6.810171 1.289 199 0.977 896
S3D 355.054 526 0.727 657 14.186 500 2.353 375 6.733 869 1.290 099 1.228 331
S4A 384.132 047 0.012 382 14.186 500 0.063 627 7.500 394 1.187 799 0.999 201
10 154.214 888 0.136 201 14.245 908 2.0463811 —0.070579 3.896 184 1.0ED6
11A 192.557 996 —1.147 537 14.186 500 2.731 487 2.466 677 1.548 220 —0.985970
11B 194.143 570 1.118 703 14.186 500 —2.565 726 2.672 989 1.604 629 58.861 806
12A 255.184 832 2.997 235 14.186 500 —4.411 452 0.874 535 1.163 199 —9.614 324
12B 255.087 869 —1.699 774 14.186 500 —-5.507 814 1.431 645 1.235299 40.957 072
13 264.262 548 —0.022 2837 15.795 319 —3.934 940 —0.0534528 2.405 55 0.13806
14A 430.002 365 7.186 733 14.186 500 —2.044 194 3.040 661 1.208 299 —0.818 486
14B 427.603 359 10.648 308 14.186 500 0.654 135 1.546 986 4.057 799 3.924 245

and that depends on the particular system. The real value of Two Gaussian wave packets are launched

the eigenvalue. of the monodromy matrix given in Table | 2
reveals that thé type POs are mainly unstable. d(x1. %)= [ (2mad) Y exd — (xy— Xko) 2/4a?
To estimate the extension of the stable region around k=1
stable periodic orbits in Fig. 4 we plot Poincaserfaces of Fipo(Xe—Xeo) ], )

sections, one with thex,=14.186%, and one withx; . . . .
—0a, and at energy of 192.4 K. It is interesting to note thatW|th their centers on two periodic orbits at the same energy
(1924 K, one on a S type, (X10,X20,P10:P20

the S periodic orbits have a quite extended stable reglon:(0.0’14.9094' 0.0,2.6473) and af,ay)

aroung :Egnl{:'g'ozl(.a)]' Contrarlyll tlo that,t.the S;ta?rl]e r(;glpn =(0.37378, 0.37173). The second PO isl&f type with

caresurfaces of sections for several energies reveals a most idths as theStype. The average energy of the wave packets
chaotic phase space for energies above the saddle point qgtzog 53 K '

with islant;ls of stability_ embedded in it. o ) The Fourier transforms of the autocorrelation functions,
What is the behavior of quantum mechanics in a mixed

chaotic/regular classical phase space as described above? To )= exp(iEt/R){((x,0)| d(x,1))dt 3)

investigate the quantum dynamics we solve the time depen- 2mh ) o ' ' '

dent Schrdinger equation. The time propagator is expandedyre shown in Fig. 5 for th&[Fig. 5(a)] and| 1A [Fig. 5(b)]

in a series of Chebyshev polynomiéfsThe action of the pQs, respectively. These markedly different spectra are the
Laplacian on the wave function is determined both by FFTresult of two excitations with initial Gaussians having the
and a variable order FD methddl. same center in configuration space and widths but differing
in their initial phases because of the different momenta of
periodic orbits.

Superimposed in Fig.(8) we show the calculated spec-
tra using the Fourier pseudospectral method and a variable
order FD method 1 =5, where the ordeM is defined from
the N=2M +1 number of grid points used in the centered
equi-spaced grid approximation of the second derivatives
The two spectra are practically indistinguishable. We used
the same grid spacing and ranges in configuration space for
both methods but we generated an optimized grid set in the
FD scheme, by selecting those grid points with potential en-
FIG. 4. Poincaresurfaces of section &= 192.4 K, andx,=14.1865a, (a) ergy t.)emw a cutoff valueyC=4OO K. This amOl.JmS Into
andx;=0 (b). The small stability islands which correspond to the saddle reducing the number of grid points from 32768 in the Fou-
node PO of the family 1A (see Fig. 2 have been marked with stars (@). rier PS casedrectangular griglto 13 338 points, which to-
The big island corresponds to the saddle far@ilNote that this stable PO gether with the use of the local approximation allows a re-
is the border of the energy shell in parie). duction in time by a factor of 3. The calculations were done

©

Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



10840  J. Chem. Phys., Vol. 111, No. 24, 22 December 1999 Guantes, Nezis, and Farantos

0.008 o0
,0)s
(a) (0,1)s
(0,2)s
0.006
(14,01
(16,001
2
£ 0004 AA
ko) 155 165
=
L |
(0,3)s
0.002 ©0)s
AL (14,01 (04)s
0000' A 4 T |A‘A(16‘l)I T l T ‘I A T
150 170 190 210 230 250 270

(b) FIG. 6. Regular eigenfunctions &ftype obtained from the spectrum of Fig.
0.0006 1 f 5(a). In the upper left panel the periodic orbit of tisefamily is superim-

osed.
(31,0011 “ (32,0011 P

0.0004 - I of phase space with which the wave function overlaps at
}. f\/ these energie€l56.5 K).

i The progressions between two successive major lines in
the spectrum of Fig. (®) with decreasing intensities are due
to wave functions of inversion type. In Fig. 7 we present the
(14,0) and (16,1) states. Superimposed is &0 periodic
orbit. Thus, the initial wave packet with a phase along $he
periodic orbit excites not only symmetric stretch states but
35 175 195 215 235 255 also the inversion states.

E(K) Contrary to that, filtering the eigenfunctions which cor-

FIG. 5. Power spectra obtained from the quantum mechanical propagatiofeSPond to the most intense peaks of the spectrum in Fig.
of two Gaussian wave packets with the same widths and centers in configls(b) we find only isomerizing type wave functiorisig. 8).

ration space, but differing in phase. (& the momentum is given along the

X, coordinate, and the regular progressions are labeled according to the
character of the wave functioriS for excitations along collinear stretching

in X,, | for isomerizing typg With solid lines we plot the spectrum ob- (14,01
tained using the FFT method, and with dashed lines the one calculated with
a 5th order FD scheme. The differences in the spectra are indistinguishable
at the scale of the plot. In panéb) the momentum is given along thg
coordinate. With the thick line we show the spectrum calculated with reso-
lution 0.15 K, and with the thin solid line the spectrum at resolution 1.25 K.
Both calculations were carried out with a FD of 5th order.

Intensity

0.0002 A

0.0000
1

with and without absorbing boundary conditions and we ob-
tained the same results. This is a consequence of the local-
ization of the wave packet.

We use the spectral methBdo filter out the eigenfunc-
tions of the most intense peaks in the spectrum of Ha). 5
Although spectral methods are not as accurate as filter diago-
nalization technique®?’ for the present study where we
seek a qualitative accuracy, these results are adequate. The
progression of the five major lines are assigned tm)d),
n=0-4 states which are found to be regular and well local-
ized in the region of the transition state as can be seen in Fig.
6. In this figure we plot the square of the eigenfunction and
the contours cover the range of 0.1-0.9. The l&bisl used
to denote their association to tieperiodic orbits. We note , ) o )
that the ground (0,@)state shows some probabilly ampii- F. . Weve nctors o somerzig chuede suianed fom 0 o

tude along the reaction path, something which we do not S€&genstates with energies 158.26(#p) and 195.92 K(down). Superim-
for the excited states. We attribute this to the chaotic regiomosed on th¢14,01 state there is a saddle node PO at the same energy.

(16,11
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tions, the symmetric stretches which inhibit the inversion
(31,011 process and those which promote the inversion process, re-
spectively. This picture remains even when the third degree
of freedom is included as recent calculations have shéwn.

We understand that experimentally it is difficult to study
the spectroscopy of At However, there is a rich spectros-
copy for H; species for which similar type saddle node pe-
riodic orbits have been located. We hope that the present
results will stimulate further studies in this system, although
we anticipate that the simplicity found in the weakly bound
Ar3, which has a significantly less dense spectrum, can not
be achieved.

In the present study we were able to further test a new
high order finite difference method for solving the time de-
pendent Schuiinger equation. We demonstrated that al-
though pseudospectral methods based on FFT are fast and
quite accurate for 2D systems, FD methods may give equiva-
lent accuracies and even become faster because of the free-
dom in selecting the grid points. The complex configuration
space of A makes the FD method more appropriate than
the FFT one.

FIG. 8. Filtered eigenfunctions corresponding to the two highest peaks il cK NOWLEDGMENT
the spectrum of Fig.(®), with energies 211.65 Kup) and 215.58 Kdown)
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