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Analytical potential functions have been constructed for Mgm+Arn, m)1, 2, clusters by combining ab initio
calculations with the electrostatic model of ion-induced dipole and induced dipole-induced dipole interactions.
The most stable structures and dynamic properties are investigated by molecular dynamics techniques. For
Mg+Ar12 an icosahedral geometry is predicted. For Mg+Arn clusters withn ) 7-12 two series of minima
with small differences in energy were found; in one the magnesium ion stays inside the cluster (solvated) and
in the other on the surface of the system. Forn > 9, clusters with Mg on the surface are slightly more stable
and have a distinguishable high vibrational frequency relative to those with the magnesium ion inside. We
find no such trends for Mg2+Arn clusters, in which the Mg cation is always solvated. The absolute minimum
of Mg2+Ar4 is a regular tetrahedron, and that of Mg2+Ar6, a regular octahedron. The stability of all these
clusters is investigated by studying caloric curves, root mean square bond length fluctuations, radial distributions,
and power spectra.

1. Introduction

The interest in investigating the structures and dynamical
properties of small finite systems such as atomic and molecular
clusters1 has led theoretical work to the study of several kinds
of forces exerted among the atoms: van der Waals,2 hydrogen
bonding,3-6 metallic,7 ionic,8,9 and covalently bonding10-12

clusters have been explored.
Ionic clusters are particularly favored in experimental studies,

since they are directly detected by a mass spectrometer. Thus,
metal ions interacting with inert gases serve as proper models
for studying solvation effects and, generally, the dependence
of the properties of the clusters on their sizes.1

The work presented in this article has been motivated by the
recent experimental investigation of Mg+Arn and Mg2+Arn
clusters by Velegrakis and Lu¨der.13 These researchers used the
laser ablation technique to form metal cations which were
ejected into a supersonic jet of argon. It is believed that the
clusters are formed at the early stage of the adiabatic expansion
by addition of Ar atoms to the smaller size clusters. The highly
energized species were cooled by collisions, and the final
products were detected by a time of flight apparatus.
From the analysis of the mass spectra some particularly stable

structures (known as magic numbers) were detected for both
types of clusters. Mg+Arn yielded higher intensity peaks relative
to the neighboring ones forn ) 12, 18, 22, 25, 28, 31, 45, and
54, whereas Mg2+Arn gave markedly different behavior, show-
ing only one sharp peak atn) 6 and a broad peak atn) 14.13

The magic numbers of the monopositive clusters coincide
with those of pure argon clusters.14 This led to the speculation
that the structures of Mg+Arn are the same as those of Arn+1
clusters. The structure of Ar13 is that of a regular icosahedron
which has an argon atom in the center, and larger magic number
aggregates are formed with the construction of additional regular
pentagons. For the double-charged magnesium-argon com-
plexes an octahedral and a fcc type geometry were conjectured
for n ) 6 and 14, respectively.
The ionic character of magnesium and the number of electrons

in this species allow for detailed experiments and accurate

theoretical calculations of the small aggregates of the magnesium
cation with inert gases. Indeed, Pilgrim et al.15 have recently
studied the photodissociation spectroscopy of species Mg+M
(M ) Ar, Kr, Xe). Vibrational frequencies, dissociation
energies, and spin-orbit splittings were measured. Their results
have been reanalyzed by Le Roy16 using near dissociation
theories in order to obtain improved estimates of the dissociation
energies.
Bauschlicher and co-workers17-19 have carried out high-level

ab initio calculations for Mg+Ar and Mg+Ar2 complexes. They
concluded that the nature of the interaction is mainly electro-
static. The calculated dissociation energy of Mg+Ar (3.25 kcal/
mol) is in good agreement with the spectroscopically estimated
one (3.66 kcal/mol). In a recent article Bauschlicher and
Partridge20 calculated the ground and the electronically excited
states of Mg+Ar and Mg+Kr and made a direct comparison with
the experimental results of Pilgrim et al.15 Good agreement
between computed and experimental results was found.
Density functional theory has been applied by Eriksson21 to

compute equilibrium geometries, energetics, and hyperfine
coupling constants for a number of charged magnesium clusters
and magnesium-rare gas complexes in matrices.
Patil22 analyzed the interactions of inert gases with closed

shell alkali and alkaline earth ions using a perturbative approach.
He predicted a binding energy for Mg2+Ar of 45 kcal/mol and
a bond length of 3.78a0.
The recent production of larger mono- and double-charged

magnesium-argon clusters13 calls for further theoretical work
on these systems. It is interesting to find the minimum energy
geometries and compare their dynamical properties in parallel
for the mono- and double-charged metal ion. In this article we
undertake such a study.
To investigate large clusters, we construct analytical potential

functions based on the electrostatic asymptotic expansion model8

and utilize the ab initio results for the small clusters. For the
monocation we use Partridge et al.’s19 calculations, but for Mg2+

we perform self-consistent-field (SCF) computations in associa-
tion with Møller Plesset23 second order perturbation (MP2)
calculations. We indeed confirm the icosahedral geom-X Abstract published inAdVance ACS Abstracts,February 15, 1996.
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etry of Mg+Ar12 and the extra stability of this cluster implied
from the mass spectrum. However, the interesting finding of
the present study is the prediction that the Mg ion may sit either
in the interior of the cluster or on the surface. For Mg2+Ar6 a
regular octahedron ofOh symmetry is predicted.
The article is organized as follows: In section 2 we describe

the potential energy surfaces (pes), in section 3 we describe
the minimum energy geometries for different size Ar clusters,
in section 4 we present the results of our calculations of dynamic
and equilibrium properties, and finally, in section 5 we
summarize the main results.

2. Potential Energy Surfaces

Since we are aiming to study the dynamics of large size
atomic aggregates, we must formulate analytical potential
functions. As mentioned earlier, ab initio calculations suggest
that the electrostatic forces prevail in the interactions of Mg+

with Ar.19 Therefore, we adopt an electrostatic model. The
potential is written as8

The first sum describes the interactions of the Mg ion (labeled
as atom 1) with the atoms of argon (labeled as atoms 2, 3, ...,
n+ 1 ). The second term in eq 1 denotes the interactions among
argon atoms.
The first term is developed as

where rbj is the position vector of atomj in a space fixed cartesian
coordinate system, rbjk ) rbj - rbk, and its normrjk ) |rbj - rbk|; a1
is the polarizability of the magnesium cation;ak ) aAr is the
polarizability of the argon atomk, k ) 2, 3, ...,n + 1; EBk is the
intensity of the electric field at the position of atomk,

(whereQ is the electric charge on atom 1, andδk1 is Kronecker’s
delta function); EB1k is the contribution to the intensity of the
electric field at the position of the ion which is due to the dipole
moment of atomk; Êk, r̂ jk are the unit vectors in the directions
of the intensity of the electric field on the atomk and of the
position of atomk relative to atomj, respectively; andΦ(r1k)
is a switching function which effects a smooth interpolation
between short-range and charge-induced dipole interactions.
The first two terms in eq 2 denote the repulsive and the

dispersion potentials, respectively. Both these terms are
described with a diatomic Morse type function

The third term in eq 2 is the charge-induced dipole
interaction, the fourth term describes the effect of all other atoms
on the ion, and the fifth term is due to the induced dipole-
induced dipole interactions.

The part of the potential which yields the Ar-Ar interactions
is written as

This is the sum of a potential valid for a free argon dimer
and an electrostatic induced dipole-induced dipole interaction.
V(rjk) is given by an empirical function proposed by Aziz and
Slaman,24

where

For the completeness of this paper the values of the
parameters in the above potential are displayed in Table 1. The
polarizabilities of the atoms areaAr ) 11.13a03,19aMg+ ) 37.11
a03,19 andaMg2+ ) 0.6 a03.22

It should be noted that eq 1 is not a pairwise additive function.
Many-body interactions are introduced through the electrostatic
terms. The induced dipole moment on atomk depends on the
positions of all other atoms. To fit the parameters that appear
in the above functional form, we separately study the small
clusters of Mg+ and Mg2+.
2.1. Potential Energy Surface of Mg+Ar n. Bauschlicher

and co-workers19 employed the self-consistent-field method and
the modified coupled-pair functional approach (SCF MCPF) for
the electron correlation to calculate the binding energies and
geometries of a number of metal ions with inert gases. For
Mg+ they determined the energy and geometry of the minima
with one and two argon atoms in their electronic ground states,
2Σ+ and2A1, respectively. An extended basis set was used for
magnesium that consist of (21s16p8d6f) and contracted to
[7s7p4d3f], and for argon (17s12p6d4f)/[6s5p3d1f].
The ab initio results for Mg+Ar were employed to fit the

parameters of the Morse type potential (eq 4), and these are the
minimum energy,-3.25 kcal/mol, the harmonic frequency, 92
cm-1, and the equilibrium bond length,rm ) 5.47a0. The zero
of the total energy is defined with all atoms separated at their
electronic ground state. In the Morse type function we fix the
parameterD to be equal to the equilibrium bond length,rm,
and the other parameters are fitted such that the total potential
of the diatomic (eq 2) exactly reproduces the ab initio results.
The following switching functionΦ(r) (eq 2) was chosen:

We adjust the parametersE andF in such a way that the
potential of Mg+Ar2 reproduces the energy and geometry of
the minimum (an isosceles triangle) obtained from the ab initio
calculations of Partridge et al.19 These values areE0 ) -6.2

Vtot ) ∑
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Vn
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TABLE 1: Values for the Parameters of the Ar-Ar
Potential Function (Eq 6) Taken from Ref 24

A) 2.26210716× 105 c10 ) 0.346 027 94
a) 10.778 747 43 d) 1.36
b) -1.812 20 04 ε ) 0.284 62 kcal/mol
c6 ) 1.107 851 36 r0 ) 7.098 756 333a0
c8 ) 0.560 724 59

Vnn(j,k) ) V(rjk) +
ajakEjEk

rjk
3

[ÊjÊk - 3(Êjr̂ jk)(Êkr̂jk)] (5)

V(x) )

ε(Ae-ax+bx2 - {e-((d/x)-1)2 x< d
1 xg d}[c6x6 +

c8

x8
+
c10

x10]) (6)

x) r/r0

Φ(r) ) tanh(r - E
F ) (7)
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kcal/mol; the equilibrium geometry is at the Mg+Ar bond length
r ) 5.56a0, and the angle between the two Mg+Ar bonds is
equal to 82.5°. The fitted values of the parameters,A, B, C, D,
E, andF, are tabulated in Table 2.
Figure 1 shows the potential curve for Mg+Ar. The continu-

ous line labeled with [1] is the total potential, [2] denotes the
charge-induced dipole interaction term, [3] is the Morse type
potential, and [4] is the last two terms in eq 2.
The analytical function for the triatomic system Mg+Ar2 gives

a minimum of-6.06 kcal/mol, atr ) 5.62a0, and the angle
between the two bond lengths is 77°. This potential function
is used to study larger clusters.
2.2. Potential Energy Surface of Mg2+Ar n. We have used

the package of programs GAMESS25 to calculate the geometries
and energies of the most stable structures of Mg2+Arn for n )
1, 2, and 3. SCF type calculations were performed, and the
electron correlation energy was treated at the MP2 level. The
basis set which we used for Mg is (12s8p2d)/[8s5p2d] (triple-ú
valence plus polarization, TZV+P), and for Ar (13s10p2d)/
[8s5p2d] (TZV+P). The MP2 calculations were done with no
frozen core orbitals.
Table 3 presents the electronic energies for Mg2+Arn, n) 1,

2, and 3. A linear geometry (D∞h ) was found for the triatomic

system, and a planar minimum ofD3h symmetry was found for
the tetraatomic with the magnesium ion in the center of the
triangle.
In the fitting process of Mg2+Arn the switching function

Φ(r) (eq 2) was chosen as

As in the case of the monocation, we have used the ab initio
results to fit the parameters in the Morse type potential and
switching function. Table 2 exhibits their values. Figure 2
shows the total potential curve [1] and the contributing terms.
As before [2] denotes the charge-induced dipole term, [3] the
Morse function for the short range interactions, and [4] the last
two terms in eq 2.
The parameters in the switching function (eq 8) were chosen

so as to reproduce the energy and geometry of the triatomic.
The values in the parentheses shown in Table 3 are those that
are calculated with the analytical function. In Table 4 we
compare the energies for some other configurations of the
triatomic system far from the minimum. As can be seen, the
energies predicted from the analytical potential function are in
satisfactory agreement with the ab initio calculations.

3. Minimum Energy Structures

Generally, we are interested in finding not only the absolute
minima of the small size clusters but also a number of relative

TABLE 2: Fitted Values of the Parameters Used in the Morse Type Potential and Switching Functions (Eqs 4, 7, 8) (rm ) D Is
the Equilibrium Bond Length of Mg +Ar

A/hartrees B/a0-1 C/hartrees D/a0 E F

Mg+Ar 0.007 604 54 4.157 812 15 0.002 264 53 5.47 (rm ) 4.5 0.4
Mg2+Ar 0.035 077 68 3.944 470 24 C) A 4.478 580 86 7.0 0.0

TABLE 3: Minima of Mg 2+Ar n Clustersa

n r (a0) ESCF ESCF-MP2 ESCF-MP2
∞ E0

1 4.44 -725.671 989 -726.036 925 -725.992 666 -27.772
(4.44) (-27.772)

2 4.48 -1252.516 465-1253.117 368-1253.032 757-53.093
(4.51) (-52.23)

3 4.53 -1779.353 432-1780.190 837-1780.072 847-74.038
(4.57) (-73.51)
aESCFis the electronic ground state energy at the SCF level,ESCF-MP2

is the energy at the MP2 level, andESCF-MP2
∞ is the electronic energy

with the atoms separated at large distances. Energies are in Hartrees.
E0 is the binding energy of the cluster in kcal/mol, with the zero of the
energy defined with all atoms separated in their electronic ground states.
The numbers in parentheses are calculated values with the analytical
potential.

Figure 1. Fitted potential curve for the electronic ground state (2Σ )
of Mg+Ar. The continuous line, [1], is the total potential given by eq
2. The dashed line, [2], describes the charge-induced dipole interaction,
the dotted line, [4], is the last two terms of eq 2, and the double dashed
line, [3], is the Morse type potential.

Figure 2. Fitted potential curve for the electronic ground state (1Σ )
of Mg2+Ar. The continuous line, [1], is the total potential given by eq
2. The dashed line, [2], describes the charge-induced dipole interaction,
the dotted line, [4], is the last two terms in eq 2, and the double dashed
line, [3], is the Morse type potential. The dots along the total potential
curve denote the ab initio points.

TABLE 4: Comparison of SCF-MP2 and Analytical
Function Binding Energies for Configurations Far from the
Equilibrium Point of the Mg 2+Ar 2 Cluster (r3 is the Distance
between the Two Argon Atoms)

r1 4.5 4.74 5.87 5.19 5.87 6.64
r2 4.5 4.74 5.87 7.50 5.19 6.24
r3 9.0 8.60 8.60 12.67 7.60 10.10
ab initio -50.10 -50.59 -29.29 -30.56 -23.81 -20.74
analytical -49.74 -50.61 -30.30 -31.54 -25.07 -22.17
r1 6.64 5.39 5.66 6.09 5.19 5.45
r2 6.64 4.41 3.86 4.46 5.87 6.64
r3 10.60 9.60 8.60 8.60 8.60 9.00
ab initio -18.10 -46.16 -32.94 -39.48 -35.60 -27.87
analytical -19.72 -46.09 -32.49 -40.04 -36.56 -28.95

Φ(r) ) 1- exp[-(r/E)4] (8)
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minima and saddle points that separate them. The knowledge
of the stationary points of a dynamical system provides a zero-
order approximation to the dynamical properties of the system.26

In this work, we apply the same minimization techniques used
in previous studies on water clusters.3,4 These are the Newton-
Raphson method and the method of integration of friction
equations. The Newton-Raphson technique is an iterative
method to locate the roots of the nonlinear algebraic equations,

where fBi are the forces exerted on the atomi

The friction method requires the integration of the first order
differential equations,

whereκ-1 is the friction coefficient. We use standard integra-
tors27 to solve the above system of differential equations.
Although the Newton-Raphson method converges quadrati-

cally, very often it diverges because of a bad starting point.
We have found that the combination of the above two techniques
guarantees convergence. The way we apply it is to locate first
the stationary point with the friction method by requiring low
accuracy. Then, we find the root of eq 9 with the Newton-
Raphson method and with higher precision. The stability
properties of the stationary point are determined by linearizing
the Hamilton equations of motion and, then, diagonalizing the
matrix of the second derivatives of the Hamiltonian.26 If all
eigenvalues are pairs of imaginary numbers,(iµ, the stationary
point is stable (minimum). If there arek pairs of real
eigenvalues,(µ, the stationary point is a saddle point ofkth
order.
We have investigated and compared other minimization

techniques, such as the conjugate gradient and the variable
metric methods, and the results will be presented in another
publication.28

In the search for different minima of low energy we select
starting points for the minimization procedure using several
algorithms. We employ a Monte Carlo method for obtaining
random positions of the atoms, or we construct initial configura-
tions systematically using a building up principle. Finally, to
find minima which are dynamically connected, we integrate the
classical equations of motion and at regular time intervals we
store the phase space points that are visited. These points
provide initial conditions for the minimization algorithms. New
regions of phase space are explored when the total energy of
the cluster is increased.
In the application of the minimization techniques the PVM

(parallel virtual machine) package of programs29 were very
helpful. They enabled us to use simultaneously several
distributed computers.6

3.1. Mg+Ar n, n ) 3-14.The lowest energy minima found
for the clusters of Mg+Arn and for n ) 3-14 are shown in
Figure 3. In Table 5 we tabulate the total energies (E ) and the
energy per argon atom (E/n).
The geometries of the absolute minima of the first clustersn

) 3, 4, 5, and 6 are a trigonal pyramid ofC3V symmetry, two
triangular pyramids which share a common side, the previous
structure with one more Ar atom in the middle of a triangle
formed by a Mg ion and two argon atoms, and a regular

pentagon with the sixth argon atom in the middle of one side
of the pentagon and the magnesium on the opposite side (C5V ).
By adding more Ar atoms, we generate two series of minima

with small differences in the energies of the isomers: one with
the extra atoms on the same side as magnesium, thus closing
the cation in the interior of the cluster, and the other with the
metal atom always on the surface. The first type of minima,
which correspond to clusters with a solvated magnesium ion,
are denoted with the letter(a) and the second type, with a
nonsolvated cation, with the letter(b).
The energy differences between the two isomers(a) and(b)

are small, and as can be seen from Table 5, this difference
increases for the large clusters. The geometries of the Mg+-
Ar12 isomers are an icosahedral structure ofIh symmetry for
(a) andC5V symmetry for(b). With n ) 12 the first shell is
completed, and larger clusters are formed by filling the second
shell. We find that in the case of the Mg+Ar12- (b) isomer the

Figure 3. Minimum energy structures for the clusters Mg+Arn, n )
3-14. Forn>6 two isomers are shown, one with the Mg ion in the
interior of the cluster(a) and one with the ion on the surface(b).

TABLE 5: Total Energies, E, Energy per Atom, and Energy
per Argon Atom of the Minima of Mg +Ar n Clustersa

n -E -E/n+ 1 -E/n type

3 8.692 2.173 2.897
4 10.520 2.104 2.630
5 12.088 2.015 2.418
6 13.864 1.980 2.311
7 15.080 1.885 2.154 a

15.072 1.884 2.153 b
8 16.567 1.840 2.071 a

16.532 1.837 2.067 b
9 18.029 1.802 2.003 a

18.013 1.801 2.001 b
10 19.522 1.775 1.952 a

19.730 1.794 1.973 b
11 21.113 1.759 1.919 a

21.530 1.794 1.957 b
12 23.056 1.774 1.921 a

23.589 1.815 1.966 b
13 24.125 1.723 1.856 a

24.744 1.767 1.903 b
14 25.440 1.696 1.817 a

26.120 1.741 1.866 b

a Isomers(a) are those with the magnesium ion in the interior, and
isomers(b)with the ion on the surface. Energies are in kcal/mol. The
zero of the energy is defined with all atoms separated in their electronic
ground states.

fBi ) 0 i ) 1, 2, ...,n+ 1 (9)

fBi ) -
∂V( rb)
∂ rbi

, i ) 1, 2, ...,n+ 1 (10)

r̆b )
drb
dt

) -κ
∂V( rb)
∂ rbi

(11)
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extra Ar atoms prefer to stay on the same side as the other argon
atoms and not on the side of magnesium.
Looking at Table 5, we make the following interesting

remarks. The binding energy per argon atom decreases with
increasing cluster size, but forn ) 12 we can see a small
increase. This is an indication of the extra stability of
Mg+Ar12.
For n ) 10 and larger clusters the(b) isomers have lower

energy than the(a), reversing the trend observed in the smaller
clusters for which the(a) structures were the absolute minima.
In other words, energetically, Mg+ prefers to remain nonsolvated
in the large clusters.
This behavior can be elucidated with the analysis of the total

energy into the contributing terms. Figure 4 shows the total
energy,Vtot, the ion-induced dipole interaction,VMg+Ar, the Ar-
Ar interaction given by eq 6,VArAr, and the induced dipole-
induced dipole interactions,Vdd, among argon atoms, as
functions of the size of the cluster. Dashed lines denote the
series(a), and continuous lines the series(b). For the small
clusters (up ton ) 6 ) the repulsive termVdd balances the
attractive termVArAr, as can be seen from the approximately
symmetric split of these two curves in Figure 4. Therefore,
the stability of the cluster is determined mainly by the attractive
VMg+Ar term.
The symmetric split of the two contributing terms of the Ar-

Ar interaction is destroyed for larger clusters, and both terms
Vdd andVArAr favor the nonsolvated magnesium-argon clusters.
For the isomers(b) the repulsion of the induced dipole-induced
dipole interaction is less because of the better orientation of
the dipole moments, and also the Ar-Ar attraction becomes
more efficient. Contrary to that, the ion-induced dipole
interaction favors a solvated magnesium. The balance of the
termsVMg+Ar, VArAr, and Vdd determines the stability of the
cluster. For example, for Mg+Ar12 the numerical values for
the above three terms are-17.219,-9.242, and+3.405 kcal/
mol for isomer(a) and-15.365,-10.464, and+2.239 kcal/
mol for isomer(b).
We may conclude that the icosahedral structure of Mg+Ar12

has two isomers, one with the metal atom in the center and the
other with the ion on the surface. Our potential predicts as a
lower energy minimum the one with Mg on the surface.
However, taking into account the small difference in energy
between these two isomers, it is difficult to claim that this is a
final conclusion. Ab initio calculations or spectroscopic experi-
ments are needed.

We have made a harmonic frequency analysis for all minima
that we have located. For Mg+Ar6 the highest frequency is
about 80 cm-1, and for the clusters of type(a) this value
decreases as the size increases. On the contrary, for the type
(b) structures the highest frequency increases, reaching a value
of 160 cm-1 atn) 12. The normal coordinate that corresponds
to this eigenfrequency describes mainly vibrations of the metal
ion and of the argon atom which is in the center of the
icosahedral structure. In the following sections we argue that
this is a characteristic which distinguishes the two isomers.
3.2. Mg2+Ar n, n ) 3-18.We have seen that the binding

energy of Mg2+Ar is almost 1 order of magnitude larger than
that of Mg+Ar and that the equilibrium bond length of the
former is smaller. Consequently, the induced dipole moments
on the argon atoms are larger and the minimum energy
geometries of Mg2+Arn clusters are expected to be markedly
different from those of the monocation.
Figure 5 shows the geometries forn ) 3-18, and Table 6

tabulates their energies. Forn ) 3 a planar triangularD3h

geometry is found with the Mg ion in the center, forn ) 4 a
regular tetrahedron (Td ) is predicted, and forn ) 5 a C2V
symmetry structure is located. A regular octahedron is the
geometry of Mg2+Ar6 (Oh). Addition of one more Ar atom
destroys this high symmetry.
It is worth mentioning that we have carried out SCF type

calculations forn ) 4, 5, and 6 with a smaller basis set than

Figure 4. Plots of the total energy (Vtot ), ion-induced dipole
interaction (VMg+Ar), Ar-Ar interaction (VArAr ), given by eq 6, and the
induced dipole-induced dipole interactions (Vdd ), among argon atoms,
as functions of the size of the cluster.

Figure 5. Minimum energy structures for the clusters Mg2+Arn, n )
3-18.

TABLE 6: Total Energies, E, Energy per Atom, and Energy
per Argon Atom of the Minima of Mg 2+Ar n Clustersa

n -E -E/n+ 1 -E/n

3 73.506 18.377 24.502
4 92.526 18.505 23.132
5 107.877 17.980 21.575
6 123.313 17.616 20.552
7 129.156 16.144 18.450
8 135.887 15.098 16.986
9 139.202 13.920 15.476
10 142.320 12.938 14.232
11 144.559 12.047 13.142
12 146.881 11.298 12.240
13 149.043 10.646 11.465
14 151.303 10.087 10.807
15 153.484 9.593 10.232
16 155.724 9.160 9.733
17 157.848 8.769 9.285
18 160.038 8.423 8.891

a Energies are in kcal/mol. The zero of the energy is defined with
all atoms separated in their electronic ground states.
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that used before, and we found minima of the same symmetry
as those given by the model potential.
For Mg2+Ar8 a square antiprism is formed as the lowest

energy minimum. The next two clusters in the series are
obtained by putting one argon atom above and one below and
in the center of each square, respectively. Larger clusters are
constructed by adding argon atoms on the sides of Mg2+Ar10,
as shown in Figure 5. The series is completed with the Mg2+-
Ar18 cluster. For all these complexes we have not located a
minimum with the metal atom on the surface.
If we adopt the assumption that magic numbers correspond

to the clusters of high symmetry or result after the completion
of a shell of atoms, then we would expect that the second peak
in the mass spectrum would be forn ) 18. This is not in
agreement with the experimental observation which shows a

broad peak atn) 14. Such a minimum might result by putting
Ar atoms of the second shell at the centers of the sides of the
regular octahedral Mg2+Ar6, thus obtaining a fcc type geometry
(Figure 6). We have located this minimum, but it is of higher
energy (-145.016 kcal/mol).
The geometries which we find for the clusters withn>6 are

the result of the electrostatic model. However, we must point
out that the ab initio calculations have shown a significant charge
transfer, and that means that the electrostatic potential may not
be very accurate for the larger clusters.
In conclusion, we may say that the energetics of Mg2+Arn

aggregates favor solvated structures as a result of the strong
ion-induced dipole interaction.

4. Dynamic Properties

The stationary points of the potential energy surface provide
a zero-order approximation to the dynamics of the cluster, since
for small excitation energies a harmonic approximation of the
pes is satisfactory. Thus, the motions around the stationary
points are known (both classically and quantum mechanically).
However, in dealing with highly anharmonic and strongly
coupled potential functions, it is necessary to study the full
dynamics as the excitation of the system becomes appreciable.
In particular, we are interested in finding out the energy at which
the system ceases to explore only the minimum well and the
atoms start moving erratically through an extended phase space.
In other words, the trajectory of the cluster at some particular
energy overcomes the potential barrier(s) and visits other minima

Figure 6. Fcc type minimum of Mg2+Ar14 with energy equal to
-145.016 kcal/mol.

Figure 7. (a) Caloric curves of Mg+Arn for n) 4-13. (b) The caloric
curve of the Mg+Ar12(a) isomer.

Figure 8. Bond length root mean square fluctuations,δ(T), of all
distances for the clusters Mg+Arn with n ) 7-13.

Figure 9. Time average distributions of all distances of Mg+Ar12(a)
for four different energies. Energies are in kcal/mol.
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of the pes in which it can be trapped for appreciable time
intervals. Numerous studies have been done for investigating
these transitions, which are now customarily referred to as phase
transitions from solid-like to liquid-like. Most of these studies
have been done for Arn clusters with pair additive Lennard-
Jones potentials.30,31

Equilibrium properties at some particular energy are evaluated
using either Monte Carlo or molecular dynamics techniques.
For relatively small size systems, like the clusters we are
studying, molecular dynamics methods are more efficient. The
latter require the solution of the classical equations of motion,
and in our case we integrate the Hamilton equations of motion.
The atomic aggregate is described in a space-fixed Cartesian

coordinate system. A variable order, variable time step
algorithm is used to integrate Hamilton’s equations.27 The
properties that we are interested in are the same as those
computed in our previous work on water clusters.3-6 These
are average values of the distances Mgm+-Ar and Ar-Ar and
root mean square fluctuations of the distances from the average
values,δ,

where 〈 〉t denotes time average values. Equation 12 defines

the root mean square fluctuations of all distances. Similar
equations are valid for the fluctuations of the Mgm+Ar and ArAr
bond lengths separately.
We also compute the average kinetic energy, and using the

equipartition law, we estimate a temperature for the cluster,
caloric curves, that is the total energy as a function of the
temperature, velocity autocorrelation functions,C(t),

and from it power spectra, as well as radial distribution
functions.
To obtain the average values, we integrate one trajectory at

total energyE, for time intervals which vary between 500 ps
and 1 ns. The energy of the system is increased by scaling the
momenta, and then we leave the system to relax by integrating
the new trajectory for times of 100-200 ps before we start
selecting points for the evaluation of the average values. To
test for convergence, in a few runs we compare the results by
doubling the integration time of the trajectory and by increasing
the energy with smaller energy steps. Negligible differences
were found in these tests.
4.1. Mg+Ar n. We first examine possible phase transitions

for the clusters of the magnesium monocation. Signatures of
such events may be seen in the caloric curves and in plots of
the root mean square bond length fluctuations. Figure 7a shows

Figure 10. Comparison of the caloric curves, the average Mg-Ar distances, and their root mean square fluctuations,δ(T), of the isomers(a) and
(b) of Mg+Ar12.
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the caloric curves for the clusters withn ) 4-13. Figure 7b
presents the caloric curve of Mg+Ar12(a) for a better inspection.
As is well-known, the temperature at the phase transition is

better estimated in plots of the root mean square fluctuations
of the distances, and Figure 8 shows the results of Mg+(b)
clusters forn) 7-13. At the temperature at which the system
starts exploring large regions of phase space, theδ function
exceeds the value of 0.1 (Lindemman’s criterion).32

From Figure 8 we can see that the icosahedron of Mg+Ar12
is the most stable cluster. Its transition temperature is about
45 K. The stability of the cluster is further examined by

computing distributions of the average distances at different
energies. For example, Figure 9 shows such distributions for
the Mg+Ar12(a) at four different energies. At low energies
where the cluster remains in the potential well the histograms
reveal the distances of Mg-Ar and Ar-Ar encountered in the
icosahedron. The plot at the energy-20.35 kcal/mol, which
corresponds to the transition region in the caloric curve, shows
that the distributions are broader but still around the peak values
found at lower energies. Finally, at very high energies the
distributions tend to become uniform.
We have found two series of minima for Mg+Arn, n > 7,

clusters: one with the Mg ion inside and the other with the ion
on the surface of the cluster. Now, we address the question of
which of these two isomers is dynamically more stable forn)
12. In Figure 10 we compare the caloric curves, the average
Mg-Ar distances, and their root mean square fluctuations,
δ(T). We estimate the transition temperature to be 35 K for
the isomer(a) and 45 K for the isomer(b).
Figure 11 shows the power spectra obtained from the Mg

ion velocity autocorrelation function of the two Mg+Ar12
isomers at temperatures that correspond to the phase transition.
The characteristic band at 130 cm-1 is red-shifted from the
harmonic frequency (160 cm-1 ). This feature can be used to
discern the isomer(b) from isomer(a). Similar plots at lower
energies show narrower bands.
From the above we may conclude that the icosahedral

structures of Mg+Ar12 are stable dynamically as well as
energetically. Between the two isomers(a) and (b) the one
with Mg+ on the surface is the most stable.
4.2. Mg2+Ar n.A dynamic analysis of Mg2+ clusters has been

carried out forn) 5-7. Figure 12 shows the root mean square
fluctuations of all distances forn) 5, 6, and 7. We can see an
almost linear increase forn ) 6 up to 600 K. It is interesting
to note that forn) 7 a rather low transition energy is observed
(20 K). This is due to the asymmetric geometry of this cluster,
which makes the movements of Ar atoms easy.
Figure 13 shows average distances as functions of the

temperature for the clustersn ) 5, 6, and 7. The mobility of
Ar atoms in the clusters Mg2+Ar5 and Mg2+Ar7 can be seen. In
contrast, Mg2+Ar6 shows a linear dependence with the temper-
ature up to 600 K. For all these energies the octahedral

Figure 11. Power spectra of Mg+Ar12 at 35 K for the isomer(a) and
45 K for the isomer(b). For the latter, the characteristic band at 130
cm-1 that discerns this isomer can be seen (see text).

Figure 12. Root mean square fluctuations,δ(T), of Mg2+Ar distances for the clusters Mg2+Arn with n ) 5-7.
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geometry of the cluster is not destroyed on the average, and
this is considered as an indication of the extra stability of this
conformer.

5. Discussion and Conclusions

Using ab initio calculations for the small clusters of Mgm+-
Arn, m ) 1, and 2, we have constructed analytical potential
functions based on the electrostatic expansion of charge-
induced dipole and induced dipole-induced dipole interactions.
Minimum energy geometries and equilibrium properties have
been investigated with molecular dynamics techniques.
The main results are as follows.
(1) The lowest minimum energy structures of Mg+Arn, n )

1-14 are similar to those of Arn+1 clusters, with a regular
icosahedral geometry for the Mg+Ar12 cluster, and this despite
the much stronger attraction of Ar atoms by the Mg ion.
However, we have found forn > 6 two energetically nearly
equivalent isomers. Isomer(a) has Mg in the center, and isomer
(b) has the ion on the surface and an argon atom in the center.
Our potential function predicts that isomer(b) is more stable
in absolute energy forn > 9.
The coexistence of solvated and nonsolvated isomers for

heterogeneous clusters has been cited in the literature already.
A case similar to ours is that of the transition metal V+Arn33

clusters. The authors have made an analysis of the potential
function terms to investigate when the metal atom is attached
to the surface of the aggregate.
However, a more interesting case is that of the neutral clusters

of SF6Rgn34 for Rg ) Ar and Kr. Isomers with the rare gas
(Rg) atoms covering the molecule and isomers with the Rg
atoms stacked on one face of SF6 were found. The investigators
tried to rationalize these tendencies by analyzing the total
potential into two contributing terms. They showed that the
competition between the pulling of Rg-SF6 anisotropy of the
potential and the tendency for the rare gas atoms to achieve the
best packing geometries results in the two types of isomers,
solvated and nonsolvated. What is striking, as far as the argon
clusters are concerned, is the similarities in the geometries of
the lowest minima with those of Mg+Arn aggregates that involve
a spherically symmetric solute atom. For example, the cluster
with six argon atoms forms a regular pentagon, whereas forn

) 12 the argon atoms form the icosahedral structure with one
of the protruding F atoms as a vertex. Thus, the latter structure
corresponds to the(b) type isomer that we found for the
magnesium cation.
(2) Caloric curves, radial distributions, distance mean square

fluctuations, and power spectra point out that the icosahedron
of Mg+Ar12, for both solvated and nonsolvated isomers, is more
stable with respect to the temperature at which a phase transition
is observed compared to the smaller and larger clusters. The
same indicators show that isomer(b) has a transition temperature
at about 45 K, and isomer(a) at 35 K.
(3) Analysis of the harmonic frequencies reveals that clusters

of type (b) have a distinguishable large frequency compared to
clusters(a). For Mg+Ar12 isomers the maximum harmonic
frequency for(a) is about 50 cm-1 and for (b) 160 cm-1.
(4) Ab initio calculations at the SCF-MP2 level have been

performed for Mg2+Arn, n ) 1, 2, and 3. Based on these
calculations an electrostatic potential function was constructed
to study larger clusters.
(5) For the minimum of Mg2+Ar6 a regular octahedron of

Oh symmetry is found. Then) 8 atomic aggregate has a square
antiprism geometry, and then) 10, a capped structure obtained
from the square antiprism with the extra argon atoms in the
middle and above (below) the squares.
The charge transfer found in the SCF calculations of Mg2+-

Arn, n ) 1-6, clusters sheds some doubts about the accuracy
of the electrostatic expansion for the larger clusters. Therefore,
further work is needed, both theoretical and experimental, to
elucidate this point.
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