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Analytical potential functions have been constructed forWy,, m=1, 2, clusters by combining ab initio
calculations with the electrostatic model of ieimduced dipole and induced dipetnduced dipole interactions.

The most stable structures and dynamic properties are investigated by molecular dynamics techniques. For
MgtAr;; an icosahedral geometry is predicted. For'g, clusters withn = 7—12 two series of minima

with small differences in energy were found; in one the magnesium ion stays inside the cluster (solvated) and
in the other on the surface of the system. Ror 9, clusters with Mg on the surface are slightly more stable

and have a distinguishable high vibrational frequency relative to those with the magnesium ion inside. We
find no such trends for Mg Ar, clusters, in which the Mg cation is always solvated. The absolute minimum

of Mg?*Ar, is a regular tetrahedron, and that of M4rs, a regular octahedron. The stability of all these
clusters is investigated by studying caloric curves, root mean square bond length fluctuations, radial distributions,
and power spectra.

1. Introduction theoretical calculations of the small aggregates of the magnesium

The interest in investigating the structures and dynamical cation with inert gases. Indeed, Pilgrim et'ahave recently
properties of small finite systems such as atomic and molecularStudied the photodissociation spectroscopy of speciesMig
clusters has led theoretical work to the study of several kinds (M = Ar, Kr, Xe). Vibrational frequencies, dissociation
of forces exerted among the atoms: van der Waalsjrogen energies, and spirorbit splittings were measured. ?I'helr.re.sults
bonding3-¢ metallic/ ionic2® and covalently bondiri§12 have been reanalyzed by Le Fééwsmg near dissociation
clusters have been explored. theon(_as in order to obtain improved estimates of the dissociation

lonic clusters are particularly favored in experimental studies, €Nergles.
since they are directly detected by a mass spectrometer. Thus, Bauschlicher and co-workéfrs'? have carried out high-level
metal ions interacting with inert gases serve as proper modelsab initio calculations for MgAr and Mg"Ar, complexes. They
for studying solvation effects and, generally, the dependenceconcluded that the nature of the interaction is mainly electro-

of the properties of the clusters on their sies. static. The calculated dissociation energy of Mg (3.25 kcal/
The work presented in this article has been motivated by the mol) is in good agreement with the spectroscopically estimated
recent experimental investigation of Mar, and Mg Ar, one (3.66 kcal/mol). In a recent article Bauschlicher and

clusters by Velegrakis and'der3 These researchers used the Partridgé® calculated the ground and the electronically excited

laser ablation technique to form metal cations which were states of MgAr and Mg"Kr and made a direct comparison with

ejected into a supersonic jet of argon. It is believed that the the experimental results of Pilgrim et *al. Good agreement

clusters are formed at the early stage of the adiabatic expansiorbetween computed and experimental results was found.

by addition of Ar atoms to the smaller size clusters. The highly  Density functional theory has been applied by Eriksom

energized species were cooled by collisions, and the final compute equilibrium geometries, energetics, and hyperfine

products were detected by a time of flight apparatus. coupling constants for a number of charged magnesium clusters
From the analysis of the mass spectra some particularly stableand magnesiumrare gas complexes in matrices.

structures (known as magic numbers) were detected for both  patiP2 analyzed the interactions of inert gases with closed

types of clusters. MgAr, yielded higher intensity peaks relative  shell alkali and alkaline earth ions using a perturbative approach.

to the neighboring ones for= 12, 18, 22, 25, 28, 31, 45, and  He predicted a binding energy for MicAr of 45 kcal/mol and

54, whereas MfAr, gave markedly different behavior, show- 3 pond length of 3.7&.

ing only one sharp peak at= 6 and a broad peak at= 143 The recent production of larger mono- and double-charged
_The magic numbers of the monopositive clusters coincide magnesium argon cluster$ calls for further theoretical work

with those of pure argon cluste¥$. This led to the speculation o, these systems. It is interesting to find the minimum energy

that the structures of M@Ar, are the same as those ofAf geometries and compare their dynamical properties in parallel
clusters. The structure of fyis that of a regular icosahedron ¢, the mono- and double-charged metal ion. In this article we
which has an argon atom in the center, and larger magic number,

. . " undertake such a study.
aggregates are formed with the construction of additional regular To investigate large clusters, we construct analytical potential
pentagons. For the double-charged magnesiargon com- y

plexes an octahedral and a fcc type geometry were conjectureaI unctio.n.s based on.th(_a electrostatic asymptotic expansion fnodel
for n = 6 and 14, respectively and utilize the ab initio results for the small clusters. For the

The ionic character of magnesium and the number of electronsmOnocation we use Partridge et a'salculations, but for Mg
. ) ; gnes . we perform self-consistent-field (SCF) computations in associa-
in this species allow for detailed experiments and accurate

tion with Mgller Plesséf second order perturbation (MP2)
€ Abstract published ilAdvance ACS Abstract&ebruary 15, 1996. calculations. We indeed confirm the icosahedral geom-
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etry of MgtAr;, and the extra stability of this cluster implied
from the mass spectrum. However, the interesting finding of
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TABLE 1: Values for the Parameters of the Ar—Ar
Potential Function (Eq 6) Taken from Ref 24

the present study is the prediction that the Mg ion may sit either
in the interior of the cluster or on the surface. For3yrs a
regular octahedron dd, symmetry is predicted.

The article is organized as follows: In section 2 we describe
the potential energy surfaces (pes), in section 3 we describe
the minimum energy geometries for different size Ar clusters,
in section 4 we present the results of our calculations of dynamic ;
and equilibrium properties, and finally, in section 5 we
summarize the main results.

2. Potential Energy Surfaces

Since we are aiming to study the dynamics of large size
atomic aggregates, we must formulate analytical potential
functions. As mentioned earlier, ab initio calculations suggest
that the electrostatic forces prevail in the interactions offMg

with Ar.1® Therefore, we adopt an electrostatic model. The
potential is written &
n+1 n nt+l
(1)

Vit = é Vo (LK) + ; k:ZH Vinli:K)

The first sum describes the interactions of the Mg ion (labeled
as atom 1) with the atoms of argon (labeled as atoms 2, 3, ...,
n+ 1). The second term in eq 1 denotes the interactions among
argon atoms.

The first term is developed as

Vi (LK) = Vilry) + Vgelry) — a-kEkzq)(rlk)

aak E
———(EE —

alElkEl

3EFWEFY] (2)
rlk

whereTis the position vector of atofrin a space fixed cartesian
coordinate system=T; — T, and its nornrj = [f; — Til; &1
is the polarizability of the magnesium catiosx = ayr is the
polarizability of the argon atork, k=2, 3, ...,n + 1; Eis the
intensity of the electric field at the position of atdm

n+1 aiE

—[3(r |E|)"k|
1=TT=k rkl

Q .
_2(1 = O)fia
Mg

El (3)

(whereQis the electric charge on atom 1, ahid is Kronecker's
delta function); k& is the contribution to the intensity of the
electric field at the position of the ion which is due to the dipole
moment of atork; E, fix are the unit vectors in the directions
of the intensity of the electric field on the atoknand of the
position of atomk relative to atomy, respectively; andP(ri)
is a switching function which effects a smooth interpolation
between short-range and chargeduced dipole interactions.
The first two terms in eq 2 denote the repulsive and the
dispersion potentials, respectively. Both these terms are
described with a diatomic Morse type function

Vo(r) + Vy(r) = Ae®P) — ocePdrD) (4)

The third term in eq 2 is the chargénduced dipole
interaction, the fourth term describes the effect of all other atoms
on the ion, and the fifth term is due to the induced dipole

induced dipole interactions.

A=2.26210716x 10° c10=0.346 027 94
a=10.778 747 43 d=1.36
b=-1.8122004 € = 0.284 62 kcal/mol
cs = 1.107 851 36 ro=7.098 756 333
cs = 0.560 724 59

The part of the potential which yields the AAr interactions
is written as

alaka

Jk

VorlisK) = V(ry) + [E E, — S(Ejfjk)(ék?jk)] (5)

This is the sum of a potential valid for a free argon dimer
and an electrostatic induced dipslduced dipole interaction.
V(ri) is given by an empirical function proposed by Aziz and

Slamarg
V(X) =
fla )
[—6 +— + —I] (6)
X X0

(A —ax+hbx2 {

where

W-17  x <

x=d

I
1

x=rlrg,

For the completeness of this paper the values of the
parameters in the above potential are displayed in Table 1. The
polarizabilities of the atoms agg, = 11.13a0% 1% ayg+ = 37.11
ag’,'® andamgz+ = 0.6 ag°.22

It should be noted that eq 1 is not a pairwise additive function.
Many-body interactions are introduced through the electrostatic
terms. The induced dipole moment on atkrdepends on the
positions of all other atoms. To fit the parameters that appear
in the above functional form, we separately study the small
clusters of Mg and Mg+.

2.1. Potential Energy Surface of MgAr,. Bauschlicher
and co-worker® employed the self-consistent-field method and
the modified coupled-pair functional approach (SCF MCPF) for
the electron correlation to calculate the binding energies and
geometries of a number of metal ions with inert gases. For
Mg™ they determined the energy and geometry of the minima
with one and two argon atoms in their electronic ground states,
23+ and?Ay, respectively. An extended basis set was used for
magnesium that consist of (21s16p8d6f) and contracted to
[7s7p4d3f], and for argon (17s12p6d4f)/[6s5p3d1f].

The ab initio results for MAr were employed to fit the
parameters of the Morse type potential (eq 4), and these are the
minimum energy;—3.25 kcal/mol, the harmonic frequency, 92
cm™%, and the equilibrium bond lengthy, = 5.47a,. The zero
of the total energy is defined with all atoms separated at their
electronic ground state. In the Morse type function we fix the
parameteD to be equal to the equilibrium bond length,,
and the other parameters are fitted such that the total potential
of the diatomic (eq 2) exactly reproduces the ab initio results.

The following switching function®(r) (eq 2) was chosen:

r—E)

=

o(r) = tanl’( (7)

We adjust the parameteEs and F in such a way that the
potential of MgAr, reproduces the energy and geometry of
the minimum (an isosceles triangle) obtained from the ab initio
calculations of Partridge et &. These values argy = —6.2
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TABLE 2: Fitted Values of the Parameters Used in the Morse Type Potential and Switching Functions (Egs 4, 7, 8){= D Is

the Equilibrium Bond Length of Mg *Ar

Alhartrees Blag™t

C/hartrees

D/ag E F

0.007 604 54
0.035077 68

415781215
3.944 470 24

Mg*Ar
Mg?tAr

TABLE 3: Minima of Mg 2Ar, Clusters?
n r(ap)

»
Escr.mp2 Eo

1 4.44 —725.671989 —726.036 925 —725.992 666 —27.772
(4.44) 27.772)

2 4.48 —1252.516 465-1253.117 368—1253.032 757 —53.093
(4.51) (52.23)

3 4.53 —1779.353 432—1780.190 837—1780.072 847 —74.038
(4.57) 73.51)

3Escris the electronic ground state energy at the SCF l&gk-wp2
is the energy at the MP2 level, af ..\, is the electronic energy

Escr Escrvp2

with the atoms separated at large distances. Energies are in Hartrees.

Eo is the binding energy of the cluster in kcal/mol, with the zero of the
energy defined with all atoms separated in their electronic ground states.

The numbers in parentheses are calculated values with the analytical

potential.
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Figure 1. Fitted potential curve for the electronic ground stak X

of Mg*Ar. The continuous line, [1], is the total potential given by eq
2. The dashed line, [2], describes the charigeluced dipole interaction,

the dotted line, [4], is the last two terms of eq 2, and the double dashed
line, [3], is the Morse type potential.

kcal/mol; the equilibrium geometry is at the M@r bond length
r = 5.56 ap, and the angle between the two M bonds is
equal to 82.5. The fitted values of the parametess,B, C, D,

E, andF, are tabulated in Table 2.

Figure 1 shows the potential curve for Niyr. The continu-
ous line labeled with [1] is the total potential, [2] denotes the
charge-induced dipole interaction term, [3] is the Morse type
potential, and [4] is the last two terms in eq 2.

The analytical function for the triatomic system Ny, gives
a minimum of—6.06 kcal/mol, ar = 5.62 ay, and the angle
between the two bond lengths is°77This potential function
is used to study larger clusters.

2.2. Potential Energy Surface of Mg*tAr,,. We have used
the package of programs GAMES%o calculate the geometries
and energies of the most stable structures of Mg, for n =
1, 2, and 3. SCF type calculations were performed, and the
electron correlation energy was treated at the MP2 level. The
basis set which we used for Mg is (12s8p2d)/[8s5p2d] (triple-
valence plus polarization, TZ¥P), and for Ar (13s10p2d)/
[8s5p2d] (TZ\W+P). The MP2 calculations were done with no
frozen core orbitals.

Table 3 presents the electronic energies foP Mgy, n = 1,
2,and 3. A linear geometryt., ) was found for the triatomic
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Figure 2. Fitted potential curve for the electronic ground state X

of Mg?*Ar. The continuous line, [1], is the total potential given by eq
2. The dashed line, [2], describes the charigeluced dipole interaction,

the dotted line, [4], is the last two terms in eq 2, and the double dashed
line, [3], is the Morse type potential. The dots along the total potential
curve denote the ab initio points.

TABLE 4: Comparison of SCF-MP2 and Analytical
Function Binding Energies for Configurations Far from the
Equilibrium Point of the Mg 2*Ar, Cluster (rs is the Distance
between the Two Argon Atoms)

r 4.5 4.74 5.87 5.19 5.87 6.64
ra 45 4.74 5.87 7.50 5.19 6.24
rs 9.0 8.60 8.60 12.67 7.60 10.10
abinitio —50.10 —50.59 —29.29 —-30.56 —23.81 —20.74
analytical —49.74 —-50.61 —30.30 —31.54 —25.07 —22.17
r 6.64 5.39 5.66 6.09 5.19 5.45
ra 6.64 4.41 3.86 4.46 5.87 6.64
ra 10.60 9.60 8.60 8.60 8.60 9.00
abinito —18.10 —46.16 —32.94 —39.48 —35.60 —27.87

analytical —19.72 —46.09 —32.49 —40.04 —36.56 —28.95
system, and a planar minimum DBf, symmetry was found for
the tetraatomic with the magnesium ion in the center of the
triangle.

In the fitting process of M# Ar, the switching function
d(r) (eq 2) was chosen as

®(r) = 1 — exp[-(r/E)Y (8)

As in the case of the monocation, we have used the ab initio
results to fit the parameters in the Morse type potential and
switching function. Table 2 exhibits their values. Figure 2
shows the total potential curve [1] and the contributing terms.
As before [2] denotes the chargiduced dipole term, [3] the
Morse function for the short range interactions, and [4] the last
two terms in eq 2.

The parameters in the switching function (eq 8) were chosen
so as to reproduce the energy and geometry of the triatomic.
The values in the parentheses shown in Table 3 are those that
are calculated with the analytical function. In Table 4 we
compare the energies for some other configurations of the
triatomic system far from the minimum. As can be seen, the
energies predicted from the analytical potential function are in
satisfactory agreement with the ab initio calculations.

3. Minimum Energy Structures

Generally, we are interested in finding not only the absolute
minima of the small size clusters but also a number of relative
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minima and saddle points that separate them. The knowledge T )

of the stationary points of a dynamical system provides a zero- & .

order approximation to the dynamical properties of the sygfem. @lgg\@ RN @Q:ge/f’ 5
In this work, we apply the same minimization techniques used 3 4 5 6

in previous studies on water clustérs. These are the Newton

Raphson method and the method of integration of friction R /® a’;\‘\m

equations. The NewterRaphson technique is an iterative oEBe | salmo

method to locate the roots of the nonlinear algebraic equations, © 8a 8b

f=0i=12..n+1 9)

Where_’f are the forces exerted on the atom

- aV(T) P A
fi=——— i=1,2,.,n+1 (10) e W
9 SGEO | dadi

1 =Sz

The friction method requires the integration of the first order
differential equations,

. dr aV(T)
[ =—=—k

dt ar

(11)
i Figure 3. Minimum energy structures for the clusters Mg,, n =

) o o ) 3—14. Forn>6 two isomers are shown, one with the Mg ion in the
wherex 1 is the friction coefficient. We use standard integra- interior of the clustefa) and one with the ion on the surfa¢e).

tors’” to solve the above system of differential equations. .

Although the NewtorRaphson method converges quadrati- TABLE 5: Total Energies, E, Energy per Atom, and Energy
cally, very often it diverges because of a bad starting point. per Argon Atom of the Minima of Mg "Ar, Clusters:
We have found that the combination of the above two techniques N -E —Emn+1 —E/n type

guarantees convergence. The way we apply it is to locate first 3 8.692 2.173 2.897
the stationary point with the friction method by requiring low 4 10.520 2.104 2.630
accuracy. Then, we find the root of eq 9 with the Newton g ig-ggi i-gég ggﬁ
Raphson method and with higher precision. The stability ‘ : ‘

. . . - " . 7 15.080 1.885 2.154 a
properties of the stationary point are determined by linearizing 15.072 1.884 2153 b
the Hamilton equations of motion and, then, diagonalizing the 8 16.567 1.840 2.071 a
matrix of the second derivatives of the Hamiltonf&nIf all 16.532 1.837 2.067 b
eigenvalues are pairs of imaginary numbetiy, the stationary 9 18.029 1.802 2.003 a
point is stable (minimum). If there ar& pairs of real 18.013 1.801 2.001 b

. . L . 10 19.522 1.775 1.952 a
eigenvalues;u, the stationary point is a saddle point kih 19.730 1.794 1.973 b
order. 11 21.113 1.759 1.919 a

We have investigated and compared other minimization 21.530 1.794 1.957 b
techniques, such as the conjugate gradient and the variable 12 23.056 1.774 1921 a
metric methods, and the results will be presented in another 23.589 1.815 1.966 b

ublication28 13 24.125 1.723 1.856 a

p : ) o 24.744 1.767 1.903 b
In the search for different minima of low energy we select 14 25.440 1.696 1.817 a
starting points for the minimization procedure using several 26.120 1.741 1.866 b

algorithms. _\_Ne employ a Monte Carlo metho_d _f_or obta_lnlng a|somers(a) are those with the magnesium ion in the interior, and
random positions of the atoms, or we construct initial configura- isomers(b) with the ion on the surface. Energies are in kcal/mol. The

tions systematically using a building up principle. Finally, 10  zero of the energy is defined with all atoms separated in their electronic
find minima which are dynamically connected, we integrate the ground states.
classical equations of motion and at regular time intervals we
store the phase space points that are visited. These pointgpentagon with the sixth argon atom in the middle of one side
provide initial conditions for the minimization algorithms. New of the pentagon and the magnesium on the opposite €igle.(
regions of phase space are explored when the total energy of By adding more Ar atoms, we generate two series of minima
the cluster is increased. with small differences in the energies of the isomers: one with
In the application of the minimization techniques the PVM the extra atoms on the same side as magnesium, thus closing
(parallel virtual machine) package of progr&fsvere very the cation in the interior of the cluster, and the other with the
helpful. They enabled us to use simultaneously several metal atom always on the surface. The first type of minima,
distributed computer. which correspond to clusters with a solvated magnesium ion,
3.1. Mg*Arp, n = 3—14.The lowest energy minima found  are denoted with the lettgfa) and the second type, with a
for the clusters of MgAr, and forn = 3—14 are shown in nonsolvated cation, with the lettéb).

Figure 3. In Table 5 we tabulate the total energte$ &nd the The energy differences between the two isonfajsand (b)
energy per argon atont(n). are small, and as can be seen from Table 5, this difference
The geometries of the absolute minima of the first clusters  increases for the large clusters. The geometries of th&-Mg

= 3, 4, 5, and 6 are a trigonal pyramid 6§, symmetry, two Ari, isomers are an icosahedral structurelpymmetry for
triangular pyramids which share a common side, the previous (a) and Cs, symmetry for(b). With n = 12 the first shell is
structure with one more Ar atom in the middle of a triangle completed, and larger clusters are formed by filling the second
formed by a Mg ion and two argon atoms, and a regular shell. We find that in the case of the Mgro- (b) isomer the
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7
N (Ar-atoms) Figure 5. Minimum energy structures for the clusters M4gr,, n =
Figure 4. Plots of the total energy\s ), ion—induced dipole 3-18.
interaction {mg*ar), Ar—Ar interaction {/aar ), given by eq 6, and the
induced dipole-induced dipole interaction¥§4 ), among argon atoms, = TABLE 6: Total Energies, E, Energy per Atom, and Energy

as functions of the size of the cluster. per Argon Atom of the Minima of Mg #*Ar, Clusters?
extra Ar atoms prefer to stay on the same side as the otherargon n -E —-En+1 —E/n
atoms and not on the side of magnesium. 3 73.506 18.377 24.502
Looking at Table 5, we make the following interesting 4 92.526 18.505 23.132
remarks. The binding energy per argon atom decreases with 5 107.877 17.980 21.575
increasing cluster size, but far = 12 we can see a small 6 123.313 17.616 20.552
increase. This is an indication of the extra stability of ; iggégg ig:égg ig:ggg
Mg Ars.. 9 139.202 13.920 15.476
For n = 10 and larger clusters thgg) isomers have lower 10 142.320 12.938 14.232
energy than théa), reversing the trend observed in the smaller 11 144.559 12.047 13.142
clusters for which th¢a) structures were the absolute minima. ié iig-g% ié-éjg ﬁ-igg
!n other words, energetically, Mgprefers to remain nonsolvated 12 151303 10.087 10.807
in the large clusters. 15 153.484 9.593 10.232
This behavior can be elucidated with the analysis of the total 16 155.724 9.160 9.733
energy into the contributing terms. Figure 4 shows the total 17 157.848 8.769 9.285
energy Vioi, the ion-induced dipole interactioVvg+ar, the Ar— 18 160.038 8.423 8.891
Ar interaction given by eq 6Vamar, and the induced dipote 2 Energies are in kcal/mol. The zero of the energy is defined with

induced dipole interactionsVyg, among argon atoms, as all atoms separated in their electronic ground states.
functions of the size of the cluster. Dashed lines denote the
series(a), and continuous lines the seri@s). For the small We have made a harmonic frequency analysis for all minima
clusters (up ton = 6 ) the repulsive ternVyy balances the  that we have located. For Mérg the highest frequency is
attractive termVasar, as can be seen from the approximately about 80 cm?, and for the clusters of typéa) this value
symmetric split of these two curves in Figure 4. Therefore, decreases as the size increases. On the contrary, for the type
the stability of the cluster is determined mainly by the attractive (b) structures the highest frequency increases, reaching a value
Vivg+ar term. of 160 cnttatn = 12. The normal coordinate that corresponds
The symmetric split of the two contributing terms of the-Ar {9 this eigenfrequency describes mainly vibrations of the metal
Ar interaction is destroyed for larger clusters, and both terms jon and of the argon atom which is in the center of the
Vg andVarar favor the nonsolvated magnesiurargon clusters.  jcosahedral structure. In the following sections we argue that
For the isomergb) the repulsion of the induced dipeténduced  thjs s a characteristic which distinguishes the two isomers.
dipole interaction is less because of the bettgr orientation of 3.2. M@Arpn, n = 3—18. We have seen that the binding
the dlpoflfg moments, and also ;he_Aﬁr a'ttrf':lcdtlon gegpmles energy of M@+Ar is almost 1 order of magnitude larger than
ir:toer;lc‘fiolr? Ife;\;[;)rsca(\) r;tc:ﬁ/rgtetg ;1aztr,1etsiﬁmleﬂ2hgcsalanf; ce>f thethat of.Mg+Ar and that the equilibrium bond Igngth of the
terms Ve ia \/ and Vo determines t'he stability of the former is smaller. Consequently, the induced @pole moments
MgTAr, VArAr, dd y on the argon atoms are larger and the minimum energy

cluster. For example, for ri» the numerical values for .
the above three ter?ns arel%éz—g 242 andt3.405 keal/ geometries of Mg Ar, clusters are expected to be markedly
' T ' ' different from those of the monocation.

mol for isomer(a) and —15.365,—10.464, andt+2.239 kcal/ i )

mol for isomer(b). Figure 5 shows the geometries for= 3—18, and Table 6
We may conclude that the icosahedral structure of Mg, tabulates their energies. Far= 3 a planar triangulaDan

has two isomers, one with the metal atom in the center and the9e€0ometry is found with the Mg ion in the center, for= 4 a

other with the ion on the surface. Our potential predicts as a "egular tetrahedronTf ) is predicted, and fon = 5 a Cy,

lower energy minimum the one with Mg on the surface. Symmetry structure is located. A regular octahedron is the

However, taking into account the small difference in energy 9eometry of Mg*Arg (Or). Addition of one more Ar atom

between these two isomers, it is difficult to claim that this is a destroys this high symmetry.

final conclusion. Ab initio calculations or spectroscopic experi- It is worth mentioning that we have carried out SCF type

ments are needed. calculations fom = 4, 5, and 6 with a smaller basis set than
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g
?‘ broad peak at = 14. Such a minimum might result by putting
Q Ar atoms of the second shell at the centers of the sides of the
=1 regular octahedral MgAre, thus obtaining a fcc type geometry
220 ¢ (Figure 6). We have located this minimum, but it is of higher
energy (145.016 kcal/mol).

The geometries which we find for the clusters with6 are
the result of the electrostatic model. However, we must point
out that the ab initio calculations have shown a significant charge

-24.0

0.0 16.0 26.0 3(;.0 46.0 50.0 transfer, and that means that the electrostatic potential may not
T(K) be very accurate for the larger clusters. _
In conclusion, we may say that the energetics oMy,
Figure 7. (a) Caloric curves of MgAr, for n=4-13. (b) The caloric  aggregates favor solvated structures as a result of the strong
curve of the MJArs;(a) isomer. ion—induced dipole interaction.

that used before, and we found minima of the same symmetry
as those given by the model potential.

For Mg?"Arg a square antiprism is formed as the lowest  The stationary points of the potential energy surface provide
energy minimum. The next two clusters in the series are a zero-order approximation to the dynamics of the cluster, since
obtained by putting one argon atom above and one below andfor small excitation energies a harmonic approximation of the
in the center of each square, respectively. Larger clusters arepes is satisfactory. Thus, the motions around the stationary
constructed by adding argon atoms on the sides ot points are known (both classically and quantum mechanically).
as shown in Figure 5. The series is completed with thd™Mg  However, in dealing with highly anharmonic and strongly
Arig cluster. For all these complexes we have not located a coupled potential functions, it is necessary to study the full
minimum with the metal atom on the surface. dynamics as the excitation of the system becomes appreciable.

If we adopt the assumption that magic numbers correspond In particular, we are interested in finding out the energy at which
to the clusters of high symmetry or result after the completion the system ceases to explore only the minimum well and the
of a shell of atoms, then we would expect that the second peakatoms start moving erratically through an extended phase space.
in the mass spectrum would be far= 18. This is not in In other words, the trajectory of the cluster at some particular
agreement with the experimental observation which shows a energy overcomes the potential barrier(s) and visits other minima

4. Dynamic Properties
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Figure 10. Comparison of the caloric curves, the average-Mg distances, and their root mean square fluctuatidf), of the isomerga) and
(b) of Mg*Ari2.

of the pes in which it can be trapped for appreciable time the root mean square fluctuations of all distances. Similar

intervals. Numerous studies have been done for investigatingequations are valid for the fluctuations of the Wér and ArAr

these transitions, which are now customarily referred to as phasebond lengths separately.

transitions from solid-like to liquid-like. Most of these studies We also compute the average kinetic energy, and using the

have been done for Arclusters with pair additive Lennard-  equipartition law, we estimate a temperature for the cluster,

Jones potentiafys! caloric curves, that is the total energy as a function of the
Equilibrium properties at some particular energy are evaluated temperature, velocity autocorrelation functiot),

using either Monte Carlo or molecular dynamics techniques. ~

For relatively small size systems, like the clusters we are ) = Gty + ) 0(t)L{ (13)

studying, molecular dynamics methods are more efficient. The DDZ(tO)Q

latter require the solution of the classical equations of motion,

and in our case we integrate the Hamilton equations of motion. and from it power spectra, as well as radial distribution
The atomic aggregate is described in a space-fixed Cartesiarfunctions.

coordinate system. A variable order, variable time step  To obtain the average values, we integrate one trajectory at

algorithm is used to integrate Hamilton’s equatiéhsThe total energyE, for time intervals which vary between 500 ps
properties that we are interested in are the same as thoseand 1 ns. The energy of the system is increased by scaling the
computed in our previous work on water clustérs. These momenta, and then we leave the system to relax by integrating
are average values of the distancesWgAr and Ar—Ar and the new trajectory for times of 16200 ps before we start
root mean square fluctuations of the distances from the averageselecting points for the evaluation of the average values. To
values,d, test for convergence, in a few runs we compare the results by
doubling the integration time of the trajectory and by increasing
noondl [mug 5 [31(1/2) the energy yvith smaller energy steps. Negligible differences
Z Z (12) were found in these tests. . . N
n(n +1)& 1, ] 4.1. Mg'Ar,. We first examine possible phase transitions

for the clusters of the magnesium monocation. Signatures of
such events may be seen in the caloric curves and in plots of
where [IJ denotes time average values. Equation 12 defines the root mean square bond length fluctuations. Figure 7a shows
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Figure 11. Power spectra of MgAr;, at 35 K for the isome(a) and
45 K for the isomer(b). For the latter, the characteristic band at 130
cm! that discerns this isomer can be seen (see text).

the caloric curves for the clusters with= 4—13. Figure 7b
presents the caloric curve of M4ri5(a) for a better inspection.
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computing distributions of the average distances at different
energies. For example, Figure 9 shows such distributions for
the Mg-Arix(a) at four different energies. At low energies
where the cluster remains in the potential well the histograms
reveal the distances of MgAr and Ar—Ar encountered in the
icosahedron. The plot at the energy0.35 kcal/mol, which
corresponds to the transition region in the caloric curve, shows
that the distributions are broader but still around the peak values
found at lower energies. Finally, at very high energies the
distributions tend to become uniform.

We have found two series of minima for M&r,, n > 7,
clusters: one with the Mg ion inside and the other with the ion
on the surface of the cluster. Now, we address the question of
which of these two isomers is dynamically more stablenfer
12. In Figure 10 we compare the caloric curves, the average
Mg—Ar distances, and their root mean square fluctuations,
o(T). We estimate the transition temperature to be 35 K for
the isomer(a) and 45 K for the isome¢b).

Figure 11 shows the power spectra obtained from the Mg
ion velocity autocorrelation function of the two Mgry,
isomers at temperatures that correspond to the phase transition.
The characteristic band at 130 chis red-shifted from the
harmonic frequency (160 cm). This feature can be used to
discern the isomefb) from isomer(a). Similar plots at lower
energies show narrower bands.

From the above we may conclude that the icosahedral
structures of MgAry; are stable dynamically as well as
energetically. Between the two isomdi®) and (b) the one
with Mg* on the surface is the most stable.

4.2. Mg?"Ar . A dynamic analysis of M clusters has been
carried out fom = 5—7. Figure 12 shows the root mean square
fluctuations of all distances far= 5, 6, and 7. We can see an

As is well-known, the temperature at the phase transition is almost linear increase for= 6 up to 600 K. It is interesting
better estimated in plots of the root mean square fluctuations to note that fom = 7 a rather low transition energy is observed

of the distances, and Figure 8 shows the results of (idy
clusters fom = 7—13. At the temperature at which the system
starts exploring large regions of phase space,dHanction
exceeds the value of 0.1 (Lindemman’s criteriéh).

From Figure 8 we can see that the icosahedron of Mg,

(20 K). This is due to the asymmetric geometry of this cluster,
which makes the movements of Ar atoms easy.

Figure 13 shows average distances as functions of the
temperature for the clusters= 5, 6, and 7. The mobility of
Ar atoms in the clusters MgArs and Mg"Ar can be seen. In

is the most stable cluster. Its transition temperature is aboutcontrast, M§*Ars shows a linear dependence with the temper-

45 K. The stability of the cluster is further examined by

ature up to 600 K. For all these energies the octahedral

0.2 T

0.0 ¢ L
0 100

200 300

T(K)
Figure 12. Root mean square fluctuation¥(T), of Mg?"Ar distances for the clusters MtAr, with n = 5—7.
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Figure 13. Average values of the distances of Mgr, clusters.[Clis the

geometry of the cluster is not destroyed on the average, and
this is considered as an indication of the extra stability of this
conformer.

5. Discussion and Conclusions

Using ab initio calculations for the small clusters of Ttg
Ar,, m = 1, and 2, we have constructed analytical potential
functions based on the electrostatic expansion of charge
induced dipole and induced dipetinduced dipole interactions.
Minimum energy geometries and equilibrium properties have
been investigated with molecular dynamics techniques.

The main results are as follows.

(1) The lowest minimum energy structures of Mg, n =
1-14 are similar to those of Ari clusters, with a regular
icosahedral geometry for the M4ry, cluster, and this despite
the much stronger attraction of Ar atoms by the Mg ion.
However, we have found fan > 6 two energetically nearly
equivalent isomers. Isoméx) has Mg in the center, and isomer
(b) has the ion on the surface and an argon atom in the center.
Our potential function predicts that isomg) is more stable
in absolute energy fon > 9.

The coexistence of solvated and nonsolvated isomers for

heterogeneous clusters has been cited in the literature aIreadyf.

A case similar to ours is that of the transition metalAr23
clusters. The authors have made an analysis of the potential
function terms to investigate when the metal atom is attached
to the surface of the aggregate.

However, a more interesting case is that of the neutral clusters
of SkRg.** for Rg = Ar and Kr. Isomers with the rare gas
(Rg) atoms covering the molecule and isomers with the Rg
atoms stacked on one face of¢S#ere found. The investigators
tried to rationalize these tendencies by analyzing the total
potential into two contributing terms. They showed that the
competition between the pulling of RgF; anisotropy of the

potential and the tendency for the rare gas atoms to achieve the

best packing geometries results in the two types of isomers,
solvated and nonsolvated. What is striking, as far as the argon
clusters are concerned, is the similarities in the geometries of
the lowest minima with those of Md\r,, aggregates that involve

a spherically symmetric solute atom. For example, the cluster
with six argon atoms forms a regular pentagon, whereas for

average value of all distances in the cluster.

= 12 the argon atoms form the icosahedral structure with one
of the protruding F atoms as a vertex. Thus, the latter structure
corresponds to thdb) type isomer that we found for the
magnesium cation.

(2) Caloric curves, radial distributions, distance mean square
fluctuations, and power spectra point out that the icosahedron
of Mg*Ary,, for both solvated and nonsolvated isomers, is more
stable with respect to the temperature at which a phase transition
is observed compared to the smaller and larger clusters. The
same indicators show that isonibj has a transition temperature
at about 45 K, and isomgn) at 35 K.

(3) Analysis of the harmonic frequencies reveals that clusters
of type (b) have a distinguishable large frequency compared to
clusters(a). For MgrAry, isomers the maximum harmonic
frequency for(a) is about 50 cm?! and for (b) 160 cnt.

(4) Ab initio calculations at the SCF-MP2 level have been
performed for M@*Ar,, n = 1, 2, and 3. Based on these
calculations an electrostatic potential function was constructed
to study larger clusters.

(5) For the minimum of M&"Arg a regular octahedron of
On symmetry is found. Tha = 8 atomic aggregate has a square
antiprism geometry, and thre= 10, a capped structure obtained
rom the square antiprism with the extra argon atoms in the
middle and above (below) the squares.

The charge transfer found in the SCF calculations ofMg
Arp, n = 1-6, clusters sheds some doubts about the accuracy
of the electrostatic expansion for the larger clusters. Therefore,
further work is needed, both theoretical and experimental, to
elucidate this point.
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