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Abstract

The vibrational harmonic normal modes of a molecule,
which are valid at relatively low energies close to a poten-
tial minimum, are extended by periodic orbits to higher en-
ergies where anharmonicity and coupling of the degrees of
freedom set in. The families of periodic orbits which em-
anate from the equilibria (minima and transition states) of
a molecular potential energy function are located with mul-
tiple shooting methods and they are continued in energy.
The method is well established for triatomic molecules, and
recently it has been applied to biomolecules such as ala-
nine dipeptide. Long lived localized trajectories associ-
ated with specific conformations and non-linear vibrational
modes can be traced. The influence of a solvent like water
to excited non-linear normal modes is examined.

1. Introduction

Molecular spectroscopy has seen significant advances in
both frequency and time domain in the last decades [1].
Techniques such as stimulated emission pumping, dispersed
fluorescence, and high resolution Fourier transform and
laser spectroscopy have contributed to the detailed study of
small polyatomic molecules [9]. Laser femtosecond spec-
troscopy and molecular beams [1, 17] have allowed spectro-
scopists and dynamicists to study isolated molecules and to
follow a chemical reaction in real time, where bonds are
broken and new ones are formed. Furthermore, spectro-
scopic methods for studying structural and dynamic prop-
erties of complex molecules such as 2D NMR and 2D op-
tical spectroscopy utilizing multiple ultrafast coherentlaser
pulses have allowed the study of protein structure and dy-
namics and femtosecond solvation dynamics [4, 22, 30].

The established theoretical methods based on a normal
mode description of molecular vibrations which are applied
at energies close to the equilibrium point, are not valid for

vibrationally highly excited molecules. The deviation from
the harmonic approximation of the potential energy surface
imposes the need for the construction of accurate potential
functions that describe several and energetically accessible
reaction channels. These are non-linear functions and the
application of non-linear mechanics to investigate the dy-
namics of the molecule is necessary.

Apart from the computational challenges, polyatomic
molecules unravel conceptual and physical interpretation
problems. A result of the non-linear mechanical behaviour
of a dynamical system at high energies is the simultane-
ous appearance of ordered motions and chaos, as well as
the genesis of new type of motions via bifurcation phenom-
ena. As a matter of fact, the progress of non-linear mechan-
ics forces us to reexamine the mechanisms of the break-
ing and/or forming a single chemical bond as it happens in
elementary chemical reactions. New assignment schemes
which allow the classification of quantum states in a mean-
ingful and useful way are required and such novel methods
have indeed been developed thanks to the theory of periodic
orbits (POs), their bifurcations [7, 29] and the semiclassical
quantization theories [16].

Periodic orbits may be considered as the non-linear
counterparts of the harmonic normal modes of a molecule.
They evolve with the energy of the system or any other pa-
rameter in the Hamiltonian, bifurcate and produce new pe-
riodic orbits which portrait the resonances among the vibra-
tional degrees of freedom. Generally, POs reveal the struc-
ture of phase space at different energies, particularly, the
localization of energy at specific bonds [24].

Recently, we have applied the methods of locating POs
developed for small molecules to biological molecules,
such as peptides described with empirical potential func-
tions [27]. Using the alanine dipeptide as a prototype sys-
tem, we have shown how one can systematically trace re-
gions in phase space where the trajectories stay localized in
specific vibrational modes of a conformation or of a transi-
tion state. With continuation techniques we obtain families



of periodic orbits for an extended energy range and we find
elementary bifurcations such as Hamiltonian saddle-node
and Hopf like [28, 15]. In this article, we present prelimi-
nary results for the influence of a solvent like water on the
low energy conformations of alanine dipeptide excited to
specific non-linear normal modes.

2 Computational Methods

To locate periodic orbits in a dynamical system is equiv-
alent of finding the roots of the non-linear equations which
describe the return of the trajectory to its initial point in
phase space,x∗(0), after the time periodT .

B[x∗(0); T ] = x∗[T ; x∗(0)] − x∗(0) = 0. (1)

x denotes the vector of the generalized coordinates and their
conjugate momenta for a system ofN degrees of freedom,
andx0 = x(0), the values at timet = 0. x(T ) is obtained
by integrating Hamilton’s equations of motion

dx(t)

dt
= J∂H [x(t)] (0 ≤ t ≤ T ), (2)

whereH is the Hamiltonian function, andJ is a2N × 2N
dimension matrix which is used to define the symplectic
symmetry of a Hamiltonian system

J =

(

0N IN

−IN 0N

)

. (3)

0N andIN are the zero and unitN × N matrices respec-
tively. A matrix M which has the symplectic property sat-
isfies the relationJMJ+ = M .

The common procedure to find the roots of Eqs (1) is by
linearizing the equations and using iterative schemes. For
two nearby trajectories

x′

0 = x0 + ∆x, (4)

the correction∆x is obtained by

B(x′

0; T ) ≈ B(x0; T ) +
∂B

∂x0

∆x = 0,

B(x0; T ) +

[

∂x(T ; x0)

∂x0

− I2N

]

∆x = 0. (5)

The matrix

Z(T ) =
∂x(T ; x0)

∂x0

, (6)

is theFundamental Matrix, which is evaluated by integrat-
ing thevariational equations(VE)

Ż(t) = J∂2H [x(t)]Z(t). (7)

Thus, to perform one iteration in a Newton-Raphson proce-
dure for example, we first integrate for timeT Hamilton’s
and variational equations

ẋ(t) = J∂H [x(t)]

Ż(t) = J∂2HZ(t),
(8)

with initial conditions

x(0) = x0

Z(0) = I2N .
(9)

Then, we solve the linear algebraic Eqs (5)

[Z(T ) − I2N ]∆x = −B(x0; T ). (10)

Solving the VE helps not only to locate POs but also to
calculate the Lyapunov exponents which determine the sta-
bility of a trajectory. Particularly, for a periodic orbit of
period T the fundamental matrix,M = Z(T ), is called
monodromy matrixfrom the eigenvalues of which we can
determine the stability of the trajectories around the peri-
odic orbit. An initial displacement∆x afterk periods will
become∆x(kT ) = Mk∆x. Therefore, the eigenvalues of
the monodromy matrix,µ, dictate the stability of the nearby
trajectories in the linearized system. Usually,µ is written as

µ = exp(λT ). (11)

For conservative Hamiltonian systems the eigenvalues of
the monodromy matrix appear as complex conjugate pairs,
(µ, µ∗), and one pair is always equal to one [24]. When all
eigenvalues lie on the unit complex circle the PO is stable.
If one pair of eigenvalues lies on the real axis and out of
the unit circle the orbit is single unstable, if two pairs lie
on the real axis the PO is called double unstable, and so
on. For systems with larger than two degrees of freedom it
may happen four eigenvalues are out of the unit circle on
the complex plane,(µ, µ∗, µ−1, (µ∗)−1). In this case we
call the periodic orbit complex unstable.

Once we have located one member of the family of pe-
riodic orbits we can use continuation techniques [6] to find
trajectories for different periodsT . This is done by usingT
as the control parameter. Usually, for small increments of
T linear extrapolation methods are sufficient. By varyingT
and thus the energy, the eigenvalues of the monodromy ma-
trix move on the unit complex circle collide and may come
out of the unit circle rendering the PO unstable and vice
versa. At every periodT for which one pair of eigenvalues
becomes equal to one, then a bifurcation takes place and
new POs are born [7, 10].

Powerful existence theorems for POs [3, 12] guarantee
that the predicted bifurcations in the linearized system will
also remain in the non-linear system. From each minimum
of a molecular potential energy surface we expect at least



N stable families of periodic orbits, which are calledprin-
cipal or fundamental. They are associated to theN nor-
mal modes of the molecule. At a saddle point, the nor-
mal modes with pure imaginary eigenvalues (in the2N -
dimension phase space) give birth to principal families with
unstable periodic orbits. The number of unstable directions
is equal to the rank of instability of the saddle point.

We use multiple shooting techniques and the algorithms
and computer codes have been described in previous pub-
lications [25]. The challenge to extend these methods to
biomolecules requires the adoption of new practices. We
use cartesian coordinates and empirical force fields to de-
scribe the forces among the atoms. We have adopted the
Molecular Mechanics suite of programs, TINKER [23], to
our computer code for locating periodic orbits, POMULT
[26], in order to calculate the potential and its first (in
Hamilton’s equations) and second (in variational equations)
derivatives analytically.

3 Results and Discussion

As an example of what we learn from a periodic orbit
analysis of a highly excited triatomic molecule we review a
recent study of HOCl[14]. A complete quantum mechani-
cal calculation has been carried out for this molecule. Ac-
curate high level quantum chemistry calculations have pro-
duced an analytical potential function valid for the complete
nuclear configuration space. Then the nuclear Schrödinger
equation is solved in Jacobi coordinates, the distance of Cl
atom from the center of mass of OH,R, the bond length
of OH, r, and the angle between the distances,γ, to pro-
duce hundreds of vibrational eigenstates. The eigenfunc-
tions are visually examined to find out regularities and the
degree of localization in the configuration space. As en-
ergy increases, the assignment becomes cumbersome since
most of the wave functions show a complicated nodal struc-
ture. However, overtone states may appear regular at even
very high energies, and thus, they become easily assignable.
Most interesting is the normal mode overtones which lead
the molecule to dissociation (or isomerization), and for
HOCl this is theR mode. It was found, that while initially
the eigenfunctions are localized along theR coordinate, at
some energy they started to deviate from this route. Si-
multaneously, a new progression of eigenfunctions emerged
which were localized and properly oriented towards to the
dissociation channel.

In Figure 1 we show the overtone states of theR mode
plotted on the minimum potential energy path. The circles
denote the energy of the eigenstates, and also the extension
of wave functions (localization). We can see, that at energy
of about -0.5 eV the initial normal mode series, (0,0,v3), di-
verges and a new series of eigenfunctions localized along
theR coordinate appears,(0, 0, x)D. v3 andx are the num-

Figure 1. Minimum energy path for HOCl
along the dissociation coordinate R; the po-
tential is minimized in the other two degrees
of freedom. The symbols indicate the en-
ergy and the extension of the wave functions
in two overtone progressions of eigenstates
(0, 0, v3) and (0, 0, x)D, respectively (see the
text).

ber of quanta in theR mode.
A similar analysis with periodic orbits is shown in Figure

2. The curves denote the energy of POs and the maximum
extension inR. The principal family which corresponds to
the R stretch deviates at about -0.5 eV and a new family
appears after a saddle-node bifurcation (SN). Saddle-node
bifurcations appear abruptly at some energy, from which
new periodic orbits emanate in two branches, one of them is
usually with stable periodic orbits. Further analysis demon-
strates the good correspondence among the new POs and
overtone states. For more details we encourage the reading
of the review articles [8, 18, 19].

Another approach to study non-linear phenomena in
molecules is by employing spectroscopic Hamiltonians fit-
ted to reproduce part of an experimental or theoretical spec-
trum. Then, by using Hamiltonian normal form expansion
and semiclassical quantization the correspondence between
classical and quantum mechanics is achieved [13, 11].

Biomolecules are complex systems, and therefore, it is
not surprising that statistical mechanical methods are used
for their study. The systematic methods of non-linear me-



Figure 2. Minimum energy path of HOCl along
the dissociation coordinate R; the potential
is minimized in the other two degrees of free-
dom. The bold lines indicate the maximum
extension of the periodic orbits in R. R de-
notes the principal family, and SN2 and SN
saddle-node bifurcations, respectively (see
the text).
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chanics based on hierarchically calculating stationary ob-
jects such as periodic orbits, tori and stable and unstable
manifolds are considered only for systems with a few de-
grees of freedom. However, we argued before that peri-
odic orbits offer the means to extract the physics from com-
plicated calculations, and even to get reliable estimates of
eigenenergies. Recently, we have demonstrated that pe-
riodic orbits can be located for biomolecules such as the
dipeptide of alanine, a molecule with sixty internal degrees
of freedom [27].

Alanine dipeptide has served as a prototype molecule
for testing new algorithms in numerous studies in the past
[21, 31]. We also used this molecule by employing the pa-
rameters of CHARMM27 for the force field [20], Morse
functions for the bond stretches and harmonic potentials for
the angles. In this work, we investigated in detail the princi-
pal families emanating from the two lowest minima,min1,
min2 and the transition state,ts1, between them. The en-
ergy barrier for the lowest conformationmin1 to isomerize
to min2 is approximately 0.6 kcal/mol and the geometries
of the two stable conformers are like those shown in Figures
6 and 7 to be discussed below. They differ in the orientation

of left oxygen. The geometries of these two conformations
correspond to a folded (absolute minimum) and to an elon-
gated structure, respectively. Therefore, we use the distance
of the two nitrogen atoms to assign trajectories trapped in
one or the other minimum.

Among the sixty vibrational normal modes, we have
chosen to study the 23rd and 24th. The numbers used to
assign the families are the same as the enumeration of the
harmonic normal modes by increasing frequency. The 23rd
and 24th normal modes have approximately localized mo-
tions. The NH and CO bonds oscillate in phase executing
the largest displacements. Our interest to these particular
normal modes came from their specificity. Starting with
initial configurations from these oscillations and minimiz-
ing the energy we approach a specific minimum, thef23
mode leads tomin1 and thef24 to min2.

In Figure 3 the continuation/bifurcation (C/B) diagram
for the f23 and f24 families coming out from the three
equilibria of the molecule (min1, min2, ts1) is shown.
The principal families generated from minima are initially
stable. The periodic orbits which emerge from the transi-
tion state start as unstable with the same rank of instability
as the transition state.ts1 has rank-1 instability. In this
figure we plot the frequency obtained from the period of
PO as a function of the total energy of the molecule. The
anharmonic behaviour of the vibrational modes is evident.
For thef24 families of min1 and the saddle point,ts1,
an early saddle-node bifurcation is observed. This means
that at a specific energy the continuation line levels off, de-
creasing its anharmonicity, and a new pair of families of
periodic orbits emerge, one of them with stable periodic or-
bits and the other with unstable ones (we show the stable
branch). The mechanism of appearance of such bifurca-
tions has been described before [28]. It is worth noting the
higher frequency of the 24th mode ofmin1 compared to
the other two equilibrium points of the potential function.
After the appearance of the saddle-node bifurcation (family
min1 − f24 − sn1) it was very difficult to continue this
branch at higher energies. We expect a cascade of saddle-
node bifurcations as we go up in energy [8].

The question of what happens to a polypeptide in water
solution has been addressed by several investigators [32, 2].
Here, we examine the stability ofmin1 conformation ex-
cited to the normal modef23, for example, when it is em-
bedded in water. This is done by choosing initial condi-
tions for the coordinates and velocities of the alanine dipep-
tide atoms along the periodic orbits of a specific isomer
and normal mode. Then, we combine them with the co-
ordinates and velocities of 487 water molecules, described
by the TIP3P parameters. Theseembedded statessimulate
the excitation of alanine dipeptide in an overtone state. Af-
ter that, the dynamics is followed for fifty picoseconds in a
canonical ensemble at several temperatures.



Figure 3. The continuation/bifurcation dia-
gram for alanine dipeptide for two normal
modes, f23 and f24 of the three stationary
points, min1, min2, and ts1. The frequencies
are calculated from the periods of the peri-
odic orbits: ω = 2πh̄/T .
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Embedded states obtained from themin1− f23 PO and
at energy -7 kcal/mol are studied for several temperatures.
We found that at 50 K the dipeptide preserves the folded
structures. For temperatures 100 and 200 K trajectories are
trapped to both minima with folded and unfolded structures,
whereas at room temperature almost all trajectories quickly
take the unfolded form. Representative trajectories at tem-
perature 100 K are plotted in Figure 4 for times up to 2 ps,
and in Figure 5 up to 50 ps. From Figure 4, we can see that
the interaction of alanine dipeptide with water destabilizes
the initial geometry of the molecule and in times less than
0.5 ps the trajectory jumps to the unfolded configurations
or remains into the folded one. Minimization of the energy
for the total system (water and alanine dipeptide) results
in lower energy minima with open geometries than closed
ones. The preferred opens structures at room temperatures
have been found in previous studies as well [32, 2]. Here,
we point out that folded isomers can also be selected and
they survive for several picoseconds at low temperatures.

Figures 6 and 7 show configurations of the solution at
150 K with folded and unfolded dipeptide.

Localization in complex systems is currently a subject
of intense research [4, 5]. For example, energy localiza-
tion and the theory of breathers have been utilized to ar-
gue for the existence of long, non-exponential excited state

Figure 4. The variation of the distance of the
two nitrogen atoms in alanine dipeptide in
2 ps. Representative trajectories are shown
from a run at 100 K and in a canonical en-
semble.
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relaxation in myoglobin [4]. In these studies the authors
used simple models to argue that localized states may be re-
sponsible for the observed long relaxation times. Our study
unequivocally demonstrates the existence of stable periodic
orbits for substantial energy ranges in alanine dipeptide de-
scribed with an empirical potential function. Such poten-
tials are widely used in simulations of biomolecules.

We find different time scales in the isomerization process
depending on the excitation of specific vibrational modes
but from different conformations. In spite of exciting sim-
ilar modes in the three conformations their dynamics dif-
fer substantially. Controlling chemical reactions at sucha
level is one of the goals of chemical dynamics. However,
novel spectroscopic methods have indeed appeared which
study small peptides in subpicosecond time scale. In a
recent investigation of alanine tripeptide in water by two-
dimensional vibrational spectroscopy, conformational fluc-
tuations at the time scale of 0.1 ps have been reported [30].
It is worth noting that the stability parameter of the unstable
POs which originate from the transition statets1 gives an
upper estimate of the lifetime of the complex. This time is
predicted to be 0.3 ps close to that found in ref. [30].



Figure 5. The variation of the distance of the
two nitrogen atoms in alanine dipeptide in
50 ps. Representative trajectories are shown
from a run at 100 K and in a canonical ensem-
ble.
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4 Conclusions

In chemical reactions, we expect that at energies where
bonds dissociate and new ones are formed non-linearity will
play a significant role. By locating periodic orbits we make
the first approximation in understanding the complexity of
the non-linear dynamics and predicting localization of en-
ergy in particular modes, and thus, selectivity. The devel-
opment of novel spectroscopic methods for the study of iso-
lated molecules and in solutions at subpicosecond times will
increase the need for systematic theoretical investigations
such as the periodic orbit analysis offers.
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