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Small and large molecules may localize their energy in specific bonds or generally in vibrational
modes for extended periods of time, an effect which may have dramatic consequences in reaction
dynamics. Periodic orbits offer the means to identify phase space regions with localized motions.
The author demonstrate that techniques to locate periodic orbits developed for small molecules can
be applied to large molecules such as alanine dipeptide. The widely used empirical force fields are
employed and principal families of periodic orbits associated with local-type motions and emanated
from the lowest energy minima and saddle points are investigated. Continuation of these families at
high energies unravels the stable and unstable regions of phase space as well as elementary
bifurcations such as saddle nodes. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2727471�

I. INTRODUCTION

Many body complex systems are studied by two differ-
ent approaches. Either by using statistical mechanics meth-
ods or by the systematic methods of nonlinear mechanics.1 In
the latter case, models of complex dynamical systems are
explored by locating hierarchically classical mechanical sta-
tionary objects, such as equilibrium points �minima, maxima,
and saddles of the potential function�, periodic orbits and
their bifurcations, tori, reduced dimension tori, as well as
stable and unstable manifolds.2 These multidimensional sta-
tionary objects reveal the structure of phase space and they
assist us to understand and elucidate nonlinear effects. The
progress of nonlinear mechanics in the last decades is im-
mense and the mathematical theories and numerical tech-
niques which have been developed are now powerful tools
for the computer exploration of realistic systems.

Molecules are complex many-particle systems and they
are usually studied by quantum and �semi�classical mechani-
cal theories. Chemical reactions involve the break and the
formation of chemical bonds after the excitation of the mol-
ecule at energies above potential barriers. The appearance of
nonlinear phenomena, such as resonances and chaos, is in-
evitable and such phenomena have been observed
spectroscopically.3 Selectivity and specificity are well estab-
lished concepts in elementary chemical reactions when the
role of mode excitation in the reactant molecules and the
energy disposal in the products are investigated. Triatomic
molecules have been used as prototypes to develop theories
as well as to build sophisticated experimental apparatus to
study elementary chemical reactions at the molecular level
and at the femtosecond time scales.4 The small number of
degrees of freedom in these systems has allowed a detailed
analysis of the correspondence between quantum and classi-
cal theories.5

Studying larger molecules such as biological ones, the
application of systematic methods becomes a challenge,

since, not only more computer power is needed but also the
development of concepts and techniques to extract the phys-
ics from the calculations. It is not surprising that up to now
statistical mechanics methods have mainly been used, imple-
mented either by averaging over phase space points or tran-
sition paths.6 The latter method is promising for studying
rare events in large dynamical systems. On the other hand,
the systematic approach to explore polyatomic molecules is
usually exhausted by the location of equilibrium points
�minima and saddles�, to be followed with the calculation of
phase space averages.7

The hierarchical detailed exploration of the molecular
phase space requires first the location of the equilibrium
points of the potential function and then the location of pe-
riodic orbits �POs�, the tori around stable POs, stable and
unstable manifolds for the unstable POs, and even transition
state objects such as the normally hyperbolic invariant
manifolds.8 Such a program has been implemented up to
now to two and three degrees of freedom models for tri-
atomic molecules.9–11 This work has revealed the importance
of periodic orbits in elucidating nonlinear effects in spectros-
copy and the good correspondence between classical and
quantum mechanics. They have also motivated the develop-
ment of semiclassical theories.

Efforts to find localized motions in infinite periodic or
random anharmonic lattices have led to the concept of dis-
crete breathers.12,13 The initial observations of localized mo-
tions in the work of Sievers and Takeno14 triggered the dis-
covery of significant mathematical theorems for the
existence of periodic orbits in infinite dimensional lattices.
However, most of the potential functions employed in the
numerical studies were rather simple to describe realistic sys-
tems.

In this article, we apply the methods of locating POs that
we have developed for small molecules to biological mol-
ecules, such as peptides described with empirical potential
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functions. Using the alanine dipeptide as a prototype system,
we show how we can systematically trace regions in phase
space where the trajectories stay localized in specific vibra-
tional modes of a minimum or of a transition state. With
continuation techniques we obtain families of periodic orbits
for an extended energy range and we find elementary bifur-
cations such as saddle node and Hamiltonian-Hopf type.15,16

In this way, the road is opened for investigating localization
phenomena and selectivity in biological systems.13,17

II. COMPUTATIONAL METHODS

To locate periodic orbits in a dynamical system is
equivalent of finding the roots of the nonlinear equations
which describe the return of the trajectory to its initial point
in phase space after the time period T. If q1 ,q2 , . . . ,qN are
the generalized coordinates of a dynamical system of N de-
grees of freedom and p1 , p2 , . . . , pN their conjugate momenta,
we define the column vector

x = �q,p�+, �1�

where � denotes the transpose matrix. Using x we can write
Hamilton’s equations of motion in the form

dx�t�
dt

= J�H�x�t�� �0 � t � T� , �2�

where H is the Hamiltonian function, and J is a 2N�2N
dimension matrix which is used to define the symplectic
symmetry of a Hamiltonian system

J = � 0N IN

− IN 0N
� . �3�

0N and IN are the zero and unit N�N matrices, respectively.
J�H�x� is a vector field, and a matrix M which has the sym-
plectic property satisfies the relation JMJ+=M.

If x�0� denotes the initial conditions of a trajectory at
time t=0, then this trajectory is periodic if it returns to its
initial point in phase space after the time t=T

B�x�0�;T� = x�T� − x�0� = 0. �4�

Thus, to find periodic solutions of period T, it is necessary to
solve Eq. �2� subject to the two-point boundary conditions,
Eq. �4�.

The roots of Eq. �4� are usually found by iterative meth-
ods, such as Newton-Raphson, which require the examina-
tion of the time evolution of neighboring trajectories with
respect to a reference one. Taking the difference of two ini-

tially neighboring trajectories in time, �̇�t�= ẋ��t�− ẋ�t� and
expanding it as a Taylor series with respect to x�t�, the linear
terms result in what is known as variational equations �VEs�

�̇�t� = J�2H�x�t����t� �0 � t � T� , �5�

where the second derivatives of the Hamiltonian with respect
to coordinates and momenta of the reference trajectory are
needed, and thus, they depend on the curvature of the poten-
tial function. The general solution of the linear equation �Eq.
�5�� with time dependent coefficients can be expressed as

��t� = Z�t���0� , �6�

where ��0� describes the initial displacement from the refer-
ence trajectory x, and Z is the fundamental matrix

Z�t� =
�x�t�
�x�0�

. �7�

The fundamental matrix is also a solution of the variational
equations as can be seen by substituting Eq. �6� into Eq. �5�.
In other words, Z satisfies the equation

Ż�t� = J�2H�x�t��Z�t� . �8�

Obviously, at t=0, Z is the unit 2N�2N dimension matrix
and it can be integrated in time simultaneously with Hamil-
ton’s equations.

Solving the VEs helps us not only to locate POs but also
to calculate the Lyapunov exponents which determine the
stability of a trajectory. Particularly, for a periodic orbit of
period T the fundamental matrix, M =Z�T�, is called mono-
dromy matrix from the eigenvalues of which we can deter-
mine the stability of the trajectories around the periodic or-
bit. An initial displacement �0 after k periods will become
��kT�=Mk�0. Therefore, the eigenvalues of the monodromy
matrix, �, dictate the stability of the nearby trajectories in
the linearized system. Usually, � is written as

� = exp��T� . �9�

For conservative Hamiltonian systems the eigenvalues of the
monodromy matrix appear as complex conjugate pairs,
�� ,�*�, and one pair is always equal to 1.18 When all eigen-
values lie on the unit complex circle �� are pure imaginary
numbers� the PO is stable. If one pair of eigenvalues lies on
the real axis and out of the unit circle the orbit is singly
unstable, if two pairs lie on the real axis the PO is called
doubly unstable and so on. For systems with larger than two
degrees of freedom it may happen four eigenvalues are out of
the unit circle on the complex plane, �� ,�* ,�−1 , ��*�−1�. In
this case we call the periodic orbit complex unstable.

Once we have located one member of the family of pe-
riodic orbits we can use continuation techniques19 to find
trajectories for different periods T. This is done by using T as
the control parameter. Usually, for small increments of T
linear extrapolation methods are sufficient. By varying T and
thus the energy, the eigenvalues of the monodromy matrix
move on the unit complex circle, collide, and may come out
of the unit circle rendering the PO unstable and vice versa.
At every period T for which one pair of eigenvalues becomes
equal to 1, a bifurcation takes place and new POs are
born.20,21

Powerful existence theorems for POs �Refs. 22 and 23�
guarantee that the predicted bifurcations in the linearized
system will also remain in the nonlinear system. From each
minimum of a molecular potential energy surface we expect
at least N stable families of periodic orbits, which are called
principal or fundamental. They are associated with the N
normal modes of the molecule. At a saddle point, the normal
modes with pure imaginary eigenvalues �in phase space�
give birth to principal families with unstable periodic orbits.
The number of unstable directions is equal to the rank of
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instability of the saddle point. Admittedly, the well devel-
oped theory of periodic orbits and their bifurcations has con-
verted the art of solving nonlinear equations �Eq. �4�� to
science.

We use multiple shooting techniques and the algorithms
and computer codes have been described in previous
publications.24 However, the challenge to extend these meth-
ods to many degrees of freedom systems such as
alanine dipeptide �2-acetamido-N-methylpropanamide,
CH3CONHCH�CH3�CONHCH3�, the molecule that we use
in this study, and even larger biomolecules requires the adop-
tion of new practices. We use Cartesian coordinates and em-
pirical force fields to describe the forces among the atoms.
We have adopted the molecular mechanics suite of programs,
TINKER,25 to our computer code for locating periodic orbits,
POMULT,26 in order to calculate the potential and its first �in
Hamilton’s equations� and second �in variational equations�
derivatives analytically.

III. RESULTS

Alanine dipeptide has served as a prototype molecule for
testing new algorithms in numerous studies in the past.27–29

We also use this molecule by employing the parameters of
CHARMM27 for the force field,30 Morse functions for the bond
stretches,31 and harmonic potentials for the angles.

A. Equilibrium points

The hierarchical approach for studying the dynamics of
this molecule starts with the location of minima and saddle
points in the potential energy surface. For a 60 internal de-
grees of freedom molecule such as alanine dipeptide, the

number of stationary points found is large. The lowest three
minima are tabulated in Table I together with the saddle
points among them. Energies and the distance of the two
nitrogen atoms in the molecule are shown in this table as
well as the harmonic frequencies of two characteristic vibra-
tional modes to be discussed and studied thoroughly below.
Figure 1 depicts the minimum potential energy pathways
along a generalized isomerization coordinate. They have
been calculated with the method of Czerminski and Elber27

implemented in TINKER. As we can see in Fig. 1, the two
lowest minima are separated by a small barrier of about
0.6 kcal/mol. To open the other reaction channels potential
barriers of about 6.5 kcal/mol should be surmounted. In this
study we concentrate in the first isomerization pathway and
we show that, contrary to our expectation that the small bar-
rier will have negligible influence in the dynamics, domains
of phase space where trajectories are trapped for tens of pi-
coseconds even at high excitation energies can be traced
from these stationary points. The geometries of the three
equilibrium conformations of the dipeptide are shown in
Fig. 2.

For the isomerization reaction min 1↔min 2 we find
that the distance between the two nitrogen atoms �dNN� is a
monotonic function of the reaction coordinate �Fig. 3�. In
Fig. 4 we plot the minimum energy pathway as a function of
dNN. The nitrogen-nitrogen distance varies by 0.57 Å in the
two minima and it is used for assigning isomerization events.
During this process the peptide folds and unfolds and the
time scales of such reactions are important in biology.

B. Periodic orbits

The method that we have proposed to discover domains
in phase space with �de�localized trajectories is by locating
families of periodic orbits associated with equilibrium
points. In this article we investigate in detail the principal
families emanating from the minima min1 and min2, and the
transition state, ts1. The principal families generated from
the minima are initially stable. However, because of the non-
linearity they may turn to unstable at higher energies. The
principal families of POs are the natural extensions of the
harmonic normal modes, which are valid at energies close to

TABLE I. Energies in kcal/mol, the distance of the two nitrogen atoms in Å,
and the harmonic frequencies in cm−1 for the 23rd and 24th normal modes
of stationary points in the potential energy surface of alanine dipeptide.

Energy N–N distance h.f. 23 h.f. 24

min1 −16.53 3.071 661.87 736.05
min2 −15.59 3.641 668.65 704.07
min3 −14.48 3.108 656.11 735.62
ts1 −15.00 3.566 655.12 700.66
ts2 −8.18 3.211 652.25 695.97
ts3 −7.91 2.900 654.32 713.00

FIG. 1. �Color online� Minimum energy pathways connecting three minima
of alanine dipeptide along a generalized reaction coordinate.

FIG. 2. �Color online� The geometries of the two minima and the transition
state for the lowest energy isomerization reaction of alanine dipeptide. The
two squares drawn on the transition state enclose the atoms which execute
the largest motions in the f23 �left� and f24 �right� periodic orbits �see text�.
Quenching the energy from configurations of the f23 and f24 periodic orbits
specifically leads to the minima min1 and min2, respectively. From left to
right the tubes correspond to the atoms of the chemical structure
CH3CONHCH�CH3�CONHCH3.
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the minimum, to high energies where anharmonicity and
coupling of the degrees of freedom are unavoidable. Semi-
classical quantization of these periodic orbits provides a
good approximation to the overtone quantum states of the
molecule as previous studies have shown.3,5,11 The periodic
orbits which emerge from the transition state start as unstable
with the same rank of instability as the transition state. ts1
has rank-1 instability.

Among the 60 vibrational normal modes, we have cho-
sen to study the 23rd and 24th frequencies of which are also
given in Table I. The numbers used to assign the families of
periodic orbits are the same as the enumeration of the har-
monic normal modes by increasing frequency. Other princi-
pal families have been calculated and presented in Ref. 31.
The 23rd and 24th normal modes have approximately local-
ized motions that involve the atoms enclosed in the squares
of Fig. 2. The NH and CO bonds oscillate in phase executing
the largest displacements. Our interest to these particular nor-
mal modes came from their specificity. Starting with initial
configurations from these oscillations and minimizing the en-
ergy we approach a specific minimum, the f23 mode leads to
min1 and the f24 to min2.

In Fig. 5 the continuation/bifurcation �C/B� diagram for
the f23 and f24 families coming out from the three equilibria
of the molecule �min1, min2, and ts1� is shown. The anhar-
monic behavior of the vibrational modes is evident. For the
f24 families of min1 and the saddle point, ts1, an early
saddle-node bifurcation is observed. This means that at a
specific energy the continuation line levels off, decreasing its
anharmonicity, and a new pair of families of periodic orbits

emerge, one of them with stable periodic orbits and the other
with unstable ones �we show the stable branch�. The mecha-
nism of appearance of such bifurcations has been described
before.15 It is worth noting the higher frequency of the 24th
mode of min1 compared to the other two equilibrium points
of the potential function. After the appearance of the saddle-
node bifurcation �family min 1− f24−sn1� it was very diffi-
cult to continue this branch at higher energies. We expect a
cascade of saddle-node bifurcations as we go up in energy.3

Plots of some representative periodic orbits are shown in Fig.
6. We project these POs in the plane of nitrogen-nitrogen
distance and its relative velocity. The lines in the graph are
doubly drawn for the complete periodic orbits.

After locating a periodic orbit we carry out a linear sta-
bility analysis to find the eigenfrequencies and the eigenvec-
tors of the monodromy matrix from which we can determine
the behavior of the trajectories in the near neighborhood.15

Those POs which originate from the minima remain stable in
most of the degrees of freedom in the examined energy
range. However, at the energy of about −15.6 kcal/mol for
min1 and −14.1 kcal/mol for min2 we find one quadruplet of
eigenvalues which come out of the unit complex circle. We
call this kind of instability as complex and we have exam-
ined it in the past32 with respect to the quantum mechanical
consequences. The complex instability is associated with
what is called Hamiltonian-Hopf bifurcation which leads to
the appearance of new POs and tori.16

At the saddle point �rank 1� we have always one pair of

FIG. 3. The variation of the nitrogen-nitrogen distance along the minimum
energy isomerization pathway.

FIG. 4. The minimum energy pathway connecting the two lowest minima of
alanine dipeptide as a function of nitrogen-nitrogen distance.

FIG. 5. Continuation/bifurcation diagrams of the principal families of peri-
odic orbits f23 and f24 originated from the equilibria min1 and min2, and
the saddle point, ts1.

FIG. 6. Plots of representative periodic orbits projected in the plane of
nitrogen-nitrogen distance and its relative velocity.
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real eigenvalues, thus the POs born are singly unstable. For
the ts1− f24 family and at the energy of about −13 kcal/mol
we find a saddle-node bifurcation. The new family emerged
from the saddle-node bifurcation is also singly unstable and
the frequency continuous to decrease as the total energy in-
creases �Fig. 5�. The calculated instability parameter is about
�=1.2. From this we can deduce a characteristic time, �−1

�see Eq. �9��, for energy randomization �about 0.3 ps�, which
determines the time scale for the molecule to develop statis-
tical behavior.33,34 This time may be interpreted as a lower
bound of the lifetime of the molecule at a particular confor-
mation.

In Fig. 7 we depict the instability parameter for the pe-
riodic orbits born at the saddle point. We can see that the
instability for the ts1− f23 family decreases with energy and
only for positive energies starts increasing. ts1− f24 shows
more complex behavior whereas the saddle-node family in-
creases with energy.

C. Localization and selectivity

The location of periodic orbits and their continuation in
energy allow one to select trajectories from regions of phase
space that are associated with the normal modes of the mol-
ecule. This method is free of approximations, such as normal
form expansions of the Hamiltonian. Numerically exact pe-
riodic orbits are located using the fully coupled anharmonic
potential energy surface. At a chosen energy we can sample
trajectories from the neighborhood of the periodic orbit to
calculate correlation functions or to study isomerization re-
actions. For example, in Fig. 8 we plot the NN distance as a
function of time for 1000 trajectories selected from a Gauss-
ian distribution centered at a PO of the saddle point, ts1
− f23, and at energy of −10 kcal/mol. The probability to
reach min1 or min2 is about 1 /2 with a lifetime distribution
in the range of �0.5,2.5� ps. We propagate the trajectories
forward and backwards in time, a technique which speeds up
the calculations by carrying the computations parallelly. At
times longer than 6 ps the system starts having frequent
jumps from one minimum to the other. Contrary to that, tra-
jectories selected from periodic orbits of the same type, f23,
of the minima min1 and min2 stay localized for 40 ps as can
be seen in Fig. 9.

We determine the regular �and localized� or chaotic be-
havior of the system by calculating autocorrelation functions.

By sampling 1000 trajectories from a Gaussian distribution
centered on the periodic orbit we calculate the autocorrela-
tion function and from it the power spectra. Examples are
shown in Fig. 10. The frequency of the highest peak in the
power spectra is that of the periodic orbit whereas the side
peaks is the result of the nonlinear coupling among the nor-
mal modes. Complexity increases from min2 to the ts1.

Although for a few degrees of freedom systems we can
visualize the POs by projections on coordinate planes this is
not practical with many degrees of freedom systems. Instead,
the motions of the atoms along the periodic orbit are best
visualized by using the graphics available for molecular me-
chanics. We have visually examined the motions of the at-
oms for all families of POs at several energies. We confirmed
that the f23 and f24 modes are mainly local-type motions
involving the atoms enclosed in the squares of Fig. 2, even at
high excitation energies. Furthermore, by minimizing the en-
ergy starting from phase space points along the periodic or-
bits, we found that every point in the region of f23 leads to
min1, whereas by quenching from the region of f24 the sys-
tem converges to min2.

IV. DISCUSSION

Localization in complex systems is currently a subject of
intense research.13,17 For example, energy localization and
the theory of breathers have been utilized to argue for the
existence of long, nonexponential excited state relaxation in
myoglobin.17 In these studies the authors used simple models

FIG. 7. The instability parameter � for the periodic orbits at the saddle
point.

FIG. 8. �Color online� Plots of the NN distance with time obtained from
trajectories sampled around a periodic orbit of the f23 family of the saddle
point at energy of −10 kcal/mol.

FIG. 9. �Color online� Plots of the NN distance with time obtained from
trajectories sampled around a periodic orbit of the f23 families of the
minima min1 and min2 at energy of −10 kcal/mol.
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to argue that localized states may be responsible for the ob-
served long relaxation times. The present study unequivo-
cally demonstrates the existence of stable periodic orbits for
substantial energy ranges in alanine dipeptide described with
an empirical potential function. Such potentials are widely
used in simulations of biomolecules. However, the extention
to larger molecules and even the introduction of a solventlike
water are necessary to confirm the existence of local-type
motions under experimental conditions. The advantage of
searching for stationary classical objects such as periodic or-
bits and their bifurcations is the expected structural stability;
in other words small perturbations either in the environment
or in the potential function will not introduce major topologi-
cal changes but only small quantitative differences. Al-
though, one has also to prove that localization remains in
quantum calculations, the previous work on small molecules3

supports our expectations that such phenomena will remain
in the quantum world.

We find different time scales in the isomerization process
depending on the excitation of specific vibrational modes but
from different conformations. In spite of exciting similar
modes in the three conformations their dynamics differ sub-
stantially. Controlling chemical reactions at such a level is
one of the goals of chemical dynamics. However, novel spec-
troscopic methods have indeed appeared which study small
peptides in subpicosecond time scale. In a recent investiga-
tion of alanine tripeptide in water by two-dimensional vibra-
tional spectroscopy conformational fluctuations at the time
scale of 0.1 ps have been reported.35

V. CONCLUSIONS

Families of periodic orbits associated with equilibrium
points, the principal ones, of an empirical force field poten-
tial function for alanine dipeptide have been calculated with
shooting and multiple shooting techniques and propagated in
energy by using analytical first and second derivatives. Lin-
ear stability analysis of the POs allows one to predict local-
ized trajectories and upper bounds for isomerization rate con-
stants. We have demonstrated that, with the periodic
solutions of the classical equations of motion, we can climb
up to high energy regions of phase space and select system-

atically trajectories from specific anharmonic modes, which
lead the molecule to specific conformations. The present
work has demonstrated that we can systematically explore
the dynamics of a small peptide. Currently, we study pep-
tides with ten aminoacids as well as the stability of excited
conformations in a solutionlike water. The results will be
presented in future publications.
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