Εξισώσεις Maxwell


$\displaystyle \left(\vphantom{\frac{\partial T}{\partial V}}\right.$$\displaystyle {\frac{{\partial T}}{{\partial V}}}$$\displaystyle \left.\vphantom{\frac{\partial T}{\partial V}}\right)_{S}^{}$ = - $\displaystyle \left(\vphantom{\frac{\partial P}{\partial S}}\right.$$\displaystyle {\frac{{\partial P}}{{\partial S}}}$$\displaystyle \left.\vphantom{\frac{\partial P}{\partial S}}\right)_{V}^{}$, (1.121)
$\displaystyle \left(\vphantom{\frac{\partial T}{\partial P}}\right.$$\displaystyle {\frac{{\partial T}}{{\partial P}}}$$\displaystyle \left.\vphantom{\frac{\partial T}{\partial P}}\right)_{S}^{}$ = $\displaystyle \left(\vphantom{\frac{\partial V}{\partial S}}\right.$$\displaystyle {\frac{{\partial V}}{{\partial S}}}$$\displaystyle \left.\vphantom{\frac{\partial V}{\partial S}}\right)_{P}^{}$, (1.122)
$\displaystyle \left(\vphantom{\frac{\partial S}{\partial V}}\right.$$\displaystyle {\frac{{\partial S}}{{\partial V}}}$$\displaystyle \left.\vphantom{\frac{\partial S}{\partial V}}\right)_{T}^{}$ = $\displaystyle \left(\vphantom{\frac{\partial P}{\partial T}}\right.$$\displaystyle {\frac{{\partial P}}{{\partial T}}}$$\displaystyle \left.\vphantom{\frac{\partial P}{\partial T}}\right)_{V}^{}$, (1.123)
$\displaystyle \left(\vphantom{\frac{\partial S}{\partial P}}\right.$$\displaystyle {\frac{{\partial S}}{{\partial P}}}$$\displaystyle \left.\vphantom{\frac{\partial S}{\partial P}}\right)_{T}^{}$ = - $\displaystyle \left(\vphantom{\frac{\partial V}{\partial T}}\right.$$\displaystyle {\frac{{\partial V}}{{\partial T}}}$$\displaystyle \left.\vphantom{\frac{\partial V}{\partial T}}\right)_{P}^{}$. (1.124)



Farantos Stavros 2011-05-30