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The Joule-Thomson Coeflicient—A Molecular

Interpretation
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Portland, Oregon 97207
(Received 8 September 1970)

A discussion of the Joule-Thomson coefficient s
presented in terms of its molecular interpretation. Certain
aspects of the actual process are then explained in terms of
these results. It is also shown how one may use the experi-
mental data to study molecular interactions in gases.

INTRODUCTION

In 1915, in a paper' entitled “Note on the
Value of Joule-Thomson Observations for Com-
puting Steam Tables,” H. N. Davis made the
observation that

... 1t is often supposed that Joule—Thomson
or throttling experiments are of value chiefly
in evaluating the thermodynamic or Kelvin
temperature, and in discussions of molecular
attractions.

Davis then went on to elaborate a practical
aspect of the Joule-Thomson process.

In this writer’s opinion, what was exoterie in
1915 is the esoteric today. Most thermodynamic
texts discuss the Joule—Thomson process in terms
of a purely thermodynamic analysis (which
usually consists of showing the process to be
isenthalpic) and an applieation of the process to
the liquefaction of gases. Statistical thermody-
namics books (those that mention the process at
all) usually limit the discussion to showing that the
sign of the Joule—Thomson coefficient depends
qualitatively on the magnitude of the second-virial
coefficient.

It is the purpose of this note to offer a simple
but quantitative molecular interpretation of the
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Joule-Thomson coefficient and to indicate how one
may use the process to study intermolecular
interactions in the gas phase.

There are two Joule—Thomson coefficients
which are simply related?: the usual isenthalpic
coefficient p defined in Eq. (1),

w= lim (13— 1)/ (Py—Py) = (9T/3P)m, (1)

Po>Py

and the less common isothermal Joule-Thomson
coefficient ¢ defined in Eq. (2),

o= lim [H(Py) —H(Py) ]/ (Py—P1) = (3H/9P) .

PysPy

(2)

From the expression dH =CpdT+ (0H/dP)rdP, it
follows that

¢='—ﬂ0p' (3)

In the isenthalpic experiment, a gas at a constant
pressure P; and temperature 7 is expanded
through a throttling plug against a lower constant
pressure P,. By fixing the initial conditions Py and
T: and varying the final pressure, an isenthalpic
line is generated, the slope of which is the Joule—
Thomson coefficient at some specific temperature
and pressure. The curve ABC in Fig. 1 is the
inversion line and corresponds to the condition
that u=0 at the point it crosses each isenthalp.
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F1c. 1. Schematic of the Joule-Thomson expansion process.
The zero-pressure inversion temperature 70 is defined by
point C,



It will be noted that the inversion curve intercepts
the temperature axis at P =0 on the upper branch
and the vapor pressure curve on the lower branch.

From Fig. 1 it is seen that the occurrence of
cooling or warming will depend on the final and
initial states of the expansion process. If both the
final and initial states are inside of the inversion
envelope, cooling results. Conversely, heating
oceurs when the coordinates of the process are
defined entirely external to the inversion envelope.
In particular, heating will always result for any
expansion in which the final temperature is above
the zero pressure value of the inversion tempera-
ture T8, (point C, Fig. 1).

The quantity ¢ is measured by performing the
usual isenthalpic expansion and then either adding
or removing heat from the throttled gas until
Ty=T;. Thus, from the adiabatic ecase where
H(P;, T\)=H(P,, T.), one may, by measuring
the quantity g=H (P,, T1) —H(P,, Ty), which is
the heat required to restore the gas to the initial
temperature at constant pressure, obfain the
ratio [H (Py) —H (Py)]/(Py—P;), which is ¢ in
the limit of zero pressure drop.

THEORETICAL EXPRESSION FOR 4
It is a standard thermodynamic result that

_ (ﬁ) _T@V/aT)p—V (4)

P/, Cy '
Furthermore, the most general way to represent a
real gas is with the virial equation of state?

PV=A+BP4CP*+DPit-.,  (5)

where A = NRT and the coeflicients B, , ete., are
functions of the temperature but not pressure. As
written here, B is the usual second virial coefficient.
Substitution of Eq. (5) into Eq. (4) gives

_BT-B)+(C'T-C)P+(D'T—D)P*+- -]

u Cp y
(6)

where the primes denote differentiation with
respeet to temperature. In order to keep the

argument simple, we limit the discussion to the
zero pressure case. Then from Eq. (6),

lim p—p! = (B'T—B) /Cy, (7

P-0
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F1a. 2. Schematic of the square-well potential.

which is the limiting slope of an isenthalp at zero
pressure and is a property characteristic of a gas at
a specific temperature; C,.° is the value of C, at
zero pressure. It is interesting to note that even
in the limit of zero pressure where gas behavior is
essentially ideal, the coefficient 9 is still a function
of an imperfection parameter. A general and lucid
discussion of this fact is presented in Vol. II of
Kestin’s series on thermodynamies.s In addition
we see that, since the inversion curve is defined by
both temperature and pressure coordinates, a
theoretical inversion curve necessitates the use
of the higher virial coefficients.

In order to relate u° to the molecular properties
of the gas it will be necessary to use one of the
more elegant results of statistical mechanics. The
second virial coefficient B, derivable from the
theory of imperfect gases in terms of the “cluster
integrals,” may be written

B=2xN /-w 72 [1~ exp (11%7@)] dr (8)

0

for spherically symmetric molecules, where U (r)
Is the interaction potential for a molecular pair.
In order to evaluate B and hence (0, it is neces-
ary to define a speecific potential function.
The potential function U(r), chosen for the
purposes of illustration and tractability, is the
square well, defined in Eq. (9) and Fig. 2:

U(r)=w for r<e
=—¢ for o<r<Reo
=0 for r>Reo. 9
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F16. 3. Typical plot of the second virial coefficient against
temperature.

Here ¢ is the depth of the potential well, r is the
“offective” center-to-center distance between
molecules in the gas phase and R is a scale con-
stant. In spite of its simplicity, the square well
with its three adjustable parameters is often a
useful function for complex molecules. In order
actually to use this function to obtain numerical
results, one must know (usually indirectly from
experiment) the potential parameters R, ¢, and e
for a specific gas.

Substitution of Eq. (9) into Eq. (8) leads,
together with Eq. (7), and after a series of simple
integrations, to the expression for ufin terms of
the molecular parameters:

= Rre )

— €
3 P

KT
€ 27 Ng®
—I— exp ﬁ —1 bt 3 .

The term in braces arises from the integrations
from o to Ro and represents the attractive energy
contributions to u®. The last term is the repulsive
energy corresponding to the region 0 to . From

.UOCPO = {

(10)

TarLr 1. Comparison between theoretical and experimental
zero pressure inversion temperatures (in degrees Kelvin).

T9(exptl)=> T (theor)
CO, 1500 1308
N, 621 634
A 723 791

2 J, G. Kirkwood and I. Oppenheim, Chemical Thermodynamics
(MeGraw~Hill, New York, 1961), p. 83.
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Eq. (10) it is seen that at sufficiently high tem-
peratures, in particular, temperatures above T2,
the repulsive energy term will predominate leading
to a negative value for u’= (07"/9P) g since ¢ and
C,° are positive. This implies that the gas will
warm on expansion since the pressure change is
always negative. At temperatures below 7'9, the
major effect is from attractive forees with the
result that u® will be positive and the gas will cool
on expansion.

8
8
T

Termperature, ©
3

05 EX " o T a—) 5

S
Jr° (deg/atm)

Fia. 4. Plot of u° vs T for N, A, and CO,. The encircled
points represent the theoretical values for u® based on
Eq. (10). The solid lines are the experimental results.
References are as follows: N-u® vs 7 and C, (at 1 atm)
from J. R. Roebuck and H. Osterberg [Phys. Rev. 48, 450
(1935) J; A-p® vs T from J. R. Roebuck and H. Osterberg
[Phys. Rev. 46, 785 (1934)]; C,® was taken as 4.968
cal/moler deg; COsu® vs T from J. R. Roebuck et al.
[J. Amer. Chem. Soc. 64, 400 (1942)7], C;? from K. K.
Kelley [U. 8. Bur. Mines Bull. 684 (1960) ]. The u° values
from these references were obtained, when necessary, by
extrapolation of the tabulated u-vs-P data to zero pressure.
See J. R. Roebuck and H. Osterberg [J. Chem. Phys. 8, 627
(1940) ] for pressure corrections to the data tabulated in
the first three references.

A somewhat more qualitative argument, based
on Eq. (7), for the sign of x° can also be given.
Figure 3 is a typical plot of the second virial
coefficient B as a function of temperature. At low
temperatures T'B’ will be large relative to B so p
will be positive implying cooling. Conversely, at
high temperatures, TB’ will be small, B will pre-
dominante and x® will be negative with the result
that heating oceurs on expansion.

In order to examine the validity of the square
well potential, u® was calculated numerically from
Eq. (10) for N,, A, and CO,. The results are shown
in Fig. 4 with the appropriate references listed in



the legend. The constants R, o, and ¢, based on
second virial coefficient data, are from Ref. 5. In
addition one may calculate the maximum in-
version temperature T by setting Eq. (10) equal
t0 zero. Table I lists the results of this calculation
for COs, Ny, and A.

The results are perhaps surprisingly good in
view of the crude nature of the square-well
funetion. As discussed in the next section however,
this merely reflects the insensitivity of u® to a
particular potential funetion, a fact that makes the
reverse problem of calculating U (#) from experi-
mental Joule—Thomson data often ambiguous.

DETERMINATION OF POTENTIAL
PARAMETERS

The potential function deseribing two-body
interactions, while amenable in principle to deter-
mination from quantum mechanics, presents in
reality a difficult task. A common alternative is to
derive, on the basis of an assumed potential
funetion with undetermined potential parameters,
a theoretical expression for some measurable
property of the system. This expression together
with sufficient experimental data allows the
evaluation of the potential parameters. In the case
of gas phase interactions, the second virial, zero
pressure Joule-Thomson, viscosity, and diffusion
coefficients have been used for this purpose.

As an illustration of how the Joule-Thomson
coefficient may be used to evaluate the square well
potential function parameters, we chose some
recent experimental data of Francis, MeGlashan,
and Wormald® (FMW) in which ¢ for benzene was
measured as a function of temperature and
pressure.

The advantage of choosing ¢ over x is that since
¢ i8 not a function of heat capacity, the entire
effect results from changes in potential energy.

Seven values of ¢ vs P, spanning the tempera-
ture range from 343.05 to 403.42°K, were least
squared in order to obtain the ¢° (the zero-pressure
isothermal Joule-~Thomson coefficient) values and
the standard errors. These data were then used to

Tasre I1. Potential parameters for benzene.

R 1.646 0.77 0.80
o (om) X108 2.575 —4.7 —4.5
e (ergs) X101 1.230 1.23 1.32

Joule—Thomson Coefficient

-8 (crﬂ/mole)
E ] a @

P R TR R A
T T remperatore &

F1a. 5. Comparison between the calculated (solid line) and
experimental (encircled points) second virial coefficient
for benzene. The calculated line is from Eq. (11) and the
experimental points from Ref. 6.

analyze Eq. (10) by computer [with Eq. (8) ] to
obtain the best fit values for R, o, and e. The
results are listed in eolumn 2 of Table II. The fit is
quite good with an average discrepancy between
the experimental and caleculated ¢° values of less
than 0.59.

As a test of these “best fit”’ values for R, ¢, and
¢, we have computed the theoretical second virial
coefficient for benzene as a funetion of temperature.
From the definition, Eq. (8), and use of the square
well potential, Eq. (9), one obtains the result, on
substitution of the “‘best fit"’ values for R, ¢, and ¢,
that

B(em?/mole) =96.0—74.5 exp (890.7/T). (11)

Comparison between Eq. (11) and the experi-
mental second virial coeflicient data of FMW is
shown in Fig. 5. Although not shown on the graph,
B becomes positive at about 3500°K.

FMW, in an analysis based on the required
mutual consistency of experimental B, ¢° and
calorimetric data, obtained a best fit relationship
for B of the same form (square well) as Eq. (11):

B=—60.1—-70.4 exp(891.3/T). (12)

From Eq. (12) we have caleulated B, o, and ¢, the
results of which are tabulated in column 3 of
Table II. The negative value for ¢ is troublesome
conceptually since it represents physically the
collision diameter for two benzene molecules,
Summarizing the calculations, we have: (a)
BEquation (12), although physically unrealistic
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since it seems unreasonable to expect B to be non-
positive for all 7' (a fact noted by FMW),
reproduces the experimental results for B vs T,
¢* vs T, and the calorimetric data very well;
whereas (b) our best fit, Eq. (11), based on the
¢%-vs-T data only, although leading to reasonable
values for ¢ and R and an excellent fit of the
¢*vs-T data, did rather poorly at reproducing the
experimental B-vs-T' results.

In order to elucidate this discrepancy we looked
for a second “best fit”’ to Eq. (10) (again using
only the ¢’-vs-T' data) in the region of FMW’s
values for R, o, and e. This led to the results listed
in column 4 of Table IT.

Tt is not the point of this note to explore this
problem, but the benzene example does illustrate,
albeit fortuitously, some of the difficulties associ-
ated with such calculations. An unambiguous
computation of the potential parameters for a
particular function requires a large amount of
highly accurate experimental data, preferably
from different complementary measurements. It
would also seem that a search for multiple “best
fits”’ is called for. Furthermore, it is well known
that the second virial and Joule-Thomson co-
efficients are rather insensitive to the exact shape
of the potential function. Indeed, as Klein and
Hanley” have shown, the second virial coefficient
and to a lesser extent the zero-pressure Joule—
Thomson coeflicient are incapable of even differ-
entiating between potential functions within
certain temperature ranges. This is unfortunate
since both x° and B provide a direct connection
between experiment and U(r) which does not
involve a concomitant test of a theoretical
expression of unknown validity.

1 H. N. Davis, Phys. Rev. b, 359 (1915).

2 K. A. Guggenheim, Thermodynamics (North-Holland,
Amsterdam, 1967), pp. 92-101.

3 The coefficients C and D are not, strictly speaking
‘“virial coefficients” since generally the virial coefficients
are defined by expressing PV as a power series in 1/V. The
second virial coefficient B, however, has the same form in
either case (see Ref. 4, p. 131).

¢J. O. Hirschfelder, C. F. Curtiss, and R. B. Boyd,
Molecular Theory of Gases and Liquids (Wiley, New York,
1954), p. 160.
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In any case, we see that experirental Joule-
Thomson data can provide a probe for obtaining
information about molecular interactions, al-
though the analysis is far from straightforward.

Readers interested in the general topic of inter-
molecular forces and potential functions are
referred to Refs. 7-10. For a detailed discussion of
the Joule-Thomson coefficient with other potential
funetions as well as the application to mixtures,
Ref. 4 should be consulted. Reference 11 con-
tains an excellent diseussion of the thermody-
namics of the Joule—Thomson expansion.

SUMMARY

We have seen that the Joule—~Thomson co-
efficient is amenable to a simple theoretical
description from which one can rationalize, at the
molecularlevel, the details of the throttling process.
In particular, the oceurrence of heating and cooling
on expansion depends on the sensitive balance
between the forces of attraction and repulsion
between molecules. Furthermore, it is interesting
to note that even for as simple a potential function
as a square well, the agreement between experi-
ment and theory was satisfactory.

Finally, it was shown how one can use the
experimental Joule-Thomson coefficient to obtain
information about interactions in the gas phase.
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