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HEAT CAPACITY RATIO FOR GASES (g)

OBJECTIVE: Measure the speed of sound in various gases, and determine the heat

capacity  ratio,  g,  for  nitrogen,  carbon  dioxide,  helium  and  argon  by  both  the

adiabatic expansion  (Clement and Desormes) and speed of sound methods.

1. INTRODUCTION:  
By definition CV (or Cp) denotes the amount of heat energy which must be

absorbed  by  one  mole  of  a  gas  at  constant  volume  (or  pressure)  to  raise  the

temperature  of  the  gas  by  one  degree.   The  absorbed  heat  energy  causes  the

molecules to move faster (increase in translational energy), to rotate faster (increase

in rotational energy) and to vibrate faster (increase in vibrational energy).  Thus the

knowledge  of  heat  capacities  plays  a  role  in  understanding  the  complexity  of

gaseous molecules.  Unfortunately the easiest method for determining the individual

heat capacities of gases is beyond the capability of an undergraduate laboratory. The

heat  capacity ratio,  g = Cp/CV,  is  just  as useful  in understanding the structure of

gaseous molecules and is more accessible experimentally.  

2. CLEMENT AND DISORMES METHOD FOR g
2.1 Theory:

Consider the following two stage process carried out on a gas:

Stage I is a reversible adiabatic expansion of the gas from V1 to V2 with cooling

from T1  to T2 since the gas is doing work of expansion and no compensating heat

transfer is allowed.

Thus: dU = dq + dw
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dq = 0 for an adiabatic transformation, dw = -PdV for a reversible expansion

The total differential of U is given by

If we assume the gas is ideal 

 dU
dV T

=0

and 

and again for an ideal gas  PV = nRT  so

integrating we find

n CV ln
T 2

T 1
=−n R ln

V 2

V 1
(6)

or since
T 2
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since, for an ideal gas V pC  +  R =  C    (8)

therefore

Stage II involves heat transfer to the gas at constant volume sufficient to restore the

temperature to T1.  Thus, assuming ideal gas behaviour, 

(11) 

Thus

(12)

2.2  Experimental Method:

In  this  experiment  we take  a quantity  of  gas  in  a large bottle  (carboy) at
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pressure P1  (greater than atmospheric) and temperature T1 and remove the stopper

for an instant to allow the gas to expand adiabatically to pressure P2, (atmospheric),

cooling to T2 (See Fig. 1).

Figure 1  Clement and Désormes Method for Measuring g

The  stopper  is  immediately replaced  and  the  gas  is  allowed to  warm up  to  the

original temperature, T1 at constant volume V2 and the final pressure P3 is measured.

From the  measured  values  of  P1,  P2 and  P3,  the  heat  capacity  ratio,  g,  can  be

calculated.

Note that the quantity of gas under consideration is not the total initially in the bottle

but only the portion V1 below an imaginary boundary which subsequent to stage I

completely fills the bottle.  The remainder is lost from the bottle and not accounted

for.

Figure 2.  Clement & Désormes Apparatus
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2.3  Procedure:

Assemble the apparatus as shown in Fig. 2. Note that the working fluid in the open-

end manometer is dibutyl phthalate. All manometer readings must be converted to

equivalent readings in cm Hg and then added to the barometric pressure.

1)  Open clamp B and the ball valve C.  Set the gas regulator to between 5 and 10

psig gas pressure.  

2)  Slowly open the needle valve A and sweep out the carboy with the gas for 15

minutes. Reduce the gas flow by partially closing A.

3)  Close the ball valve C and pressurise the carboy to near the maximum pressure

allowed by the manometer, taking care not to blow the manometric fluid out of the

glass tube.  

4)  Finally close B.  Initially the pressure usually falls.  This is due to cooling of the

gas which has warmed as a result of work done on it in the pressurising process

(bicycle pump effect).  It may also fall due to a leak in the system. Allow the gas to

come to thermal equilibrium with the surroundings  as indicated by constancy of

pressure.  

5)  Record the levels of dibutylphthalate in the manometer.  

6)  Expand the gas adiabatically by quickly opening and closing the ball valve C.

Allow the gas to warm up to room temperature and record the manometer readings.  

7)  Repeat the entire procedure two more times with the same gas,  but omit the

flushing unless air has got into the carboy.  Record the ambient barometric pressure

and  temperature.  Note:  Do  not  open  windows  during  the  experiment.   The

temperature of the surroundings must be kept as constant as possible. (Why?)
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2.4  Calculations:  

Calculate g for each run and determine the average value of g.  Calculate g for

each gas from the Equipartition of Energy Principle and the number of degrees of

freedom.  Identify the various degrees of freedom of each gas studied.  Calculate the

order  of  magnitude  of  the  temperature  drop of  gas  at  the  moment  of  expansion

(assume an ideal gas).

3. SPEED OF SOUND METHOD FOR g (KUNDT'S TUBE)

3.1 Theory:  

Only a brief outline of the theory underlying the measurement of the speed of

sound is given here.  [For a more detailed discussion of the subject matter the student

is referred to more specialized texts (1) dealing with sound.] Sound-waves require

elastic media for their propagation, for a train of sound-waves consists essentially of

a  sequence  of  elastic  displacements  of  elements  of  the  medium.   These

displacements take place in the direction of propagation so that sound-waves are

longitudinal  in  nature.   The  longitudinal  waves  are  produced  by  a  disturbance

applied to the elastic medium causing compressions and rarefactions.  Fig. 3 shows

elements of an elastic medium at "rest".  A stimulus when applied to the medium at

rest, causes the elements to vibrate about their mean positions and, because they do

not vibrate in phase, this causes pressure (hence density) differences in the medium

resulting in compressions and rarefactions along the wavefront, as denoted by the

letters C and R in Fig.3.  These compressions and rarefactions are taking place with

such rapidity that the process for all intents and purposes is adiabatic; there is no

time for heat exchange between the vibrating elements and their surroundings, i.e. q

= 0. The adiabatic compressions and expansions of ideal gases are governed by 

PVg = constant (13)

(c.f. PV = constant for an isothermal expansion of an ideal gas) 
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Fig.  3  (a)  elements  of  elastic  medium at  "rest".  (b)  a  disturbance  passing

through the medium  causes compressions (C) and rarefactions (R). 

The speed of sound in any medium depends on the elasticity of the medium and its

density. 

It  can be shown (1)  that  the speed of  sound,  c,  in any medium is  given by the

equation 

where K is the bulk modulus of elasticity of the medium and D its density.  For a gas

undergoing abiabatic pressure changes the bulk modulus of elasticity is simply (P,

where P is the (absolute) pressure of the gas.  Thus 

If an assumption be made that the gas behaves ideally, then PV = nRT also applies,

which upon rearrangement gives 

where M is the molar mass of the gas.

c =  K /  (14)

c =  P /g  (15)

P  =  RT
M (16)
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Substitution of (3.16) into (3.15), gives

or

If  the  distance  between  corresponding  points  on  the  wave  front  (e.g.  maximum

compressions) is called the wave-length, l, and the rate at which such compressions

pass a given section is called the frequency, f, then the speed of sound is also given

by 

and

In this experiment, which is based on a modified Kundt's  tube, a sound-wave of

known frequency is sent down a long glass tube (2) and is made to reflect from a

movable piston creating a standing wave with a series of maxima, called antinodes,

A, and minimum points in between, called nodes, N, Fig. 4. 

Fig.  4   A standing wave  with  nodes,  N, and antinodes,  A, created by

reflection of a wave from the piston P.

c =  RT
M
g

(17)

g =  M c
RT

2

(18)

c =  fl (19)

g l =  M f
RT

2 2

(20)
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The wave appears to be standing which is a result of interference between two waves

of the same frequency travelling with the same speed in opposite directions.  The

distance between nearest nodes (or anti-nodes) is equal to l/2.  The successive nodes

(or anti-nodes) are in opposite phase, i.e. they differ in phase by 180 degrees (a fact

which we will take advantage of in this experiment), with maximum sound intensity

occurring at the nodes and minimum at the anti-nodes. 

3.2  Procedure:

The apparatus is shown in Fig. 5   

Fig. 5  Kundt's Tube

1) Move the piston furthest away from the speaker and let the gas sweep out air from

the Kundt's tube. It may be necessary to support the piston rod to reduce leverage on

the tube.

2) Reduce the flow of the gas to a slow stream, but sufficient to prevent air from

diffusing in during the experiment.  Be careful  with CO2 as it  cools  considerably

upon expansion from the cylinder.

3)  The microphone is powered by a small battery which you should obtain from, and

return  to,  your  T.A.   Make  sure  that  the  polarities  of  the  circuit,  including  the
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microphone battery, are correct.  

4)  Switch on the wave generator and connect its leads to the audio amplifier and

through it to the speakers and the horizontal input of the oscilloscope.  

5)  Switch on the oscilloscope and the power supply unit for the amplifier.  Insert the

microphone  battery in  its  holder  and connect  the microphone  leads  to  drive the

vertical sweep of the oscilloscope. 

6)  Select an appropriate frequency (1000 Hz for CO2, air and N2. 2000 Hz for He)

and adjust the intensity of the sound using the attenuator on the signal generator. Do

not "overblast"!  Details of adjustment of the oscilloscope will be provided by the

T.A. as the instruments may not be of the same type.  Ideally the components should

be adjusted so that the two signals to the oscilloscope are about equal in magnitude

and a circle is seen on the screen when the signals are 90o out of phase. 

7)   Slowly  move  the  piston  towards  the  speaker  until  a  straight  line  pattern  is

observed on the screen.  Record the position of the piston and note whether the

phase shift is 0o or 180o (0o shift occurs when the line is inclined 45o to the right and

the 180o phase shift occurs when the line is inclined 45o to the left).  

8)  Move the piston inward again until a next straight line pattern is obtained.  Note

the position of the piston and the phase shift.  

9)  Continue taking as many readings as the geometry of the tube allows.  Record the

temperature of the gas at the inlet.  If necessary, repeat the entire procedure until

satisfactory results are obtained.  

10)  Repeat with the other gases provided.  If time permits do the measurements at a

different frequency. 
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3.3  Calculations:

Average the spacings  l/2 and using the known frequency calculate  g for the

gas from equation (4.20).  Compare these experimental values with the theoretical

values  calculated from the Principle  of  Equipartition  of  Energy (3) and with the

accepted  literature  values  (4).  Calculate  the  standard  deviation  s for  g on  the

assumption that the main sources of error are due to uncertainty in  l and f.  The

uncertainty of the latter may be taken as 0.5% of the reading. 

3.4  Discussion:  

Discuss your results in terms of the Microscopic Interpretation of the Heat

Capacities of Gases. 

4. MICROSCOPIC INTERPRETATION OF THE HEAT CAPACITY OF

GASES

4.1  Degrees of freedom:  

The  number  of  degrees  of  freedom  of  the  molecule  is  the  number  of

independent co-ordinates which must be specified in order to locate the molecule

and its component atoms in space.  Thus for a molecule containing N atoms, 3N

co-ordinates will be required and the molecule has 3N degrees of freedom. 

4.2  Classification of degrees of freedom:  

Rather than consider each degree of freedom to be a position co-ordinate it is

convenient to classify the degrees of freedom as follows: 

(a) Translational degrees of freedom represent the three co- ordinates required

to specify the position of the centre of mass of the molecule.  For a monatomic

gas, of course N = 1 and the total number of degrees of freedom will be 3, all

of which are translational.

(b) Rotational degrees of freedom are possessed by polyatomic molecules since

different  orientations  in  space  are  possible.  For  linear  molecules  we must

specify the orientation of the  molecule with respect to rotation about two



Expt 3a                        Heat Capacity Ratio for Gases (  g  )                             12  

mutually  perpendicular  axes  passing  through  the  centre  of  mass  of  the

molecule perpendicular to the axis of the molecule.

Different orientations with respect to the molecular axis cannot be recognized and so

a linear molecule has only two rotational degrees of freedom.

For  non-linear  molecules we  must  specify  the  orientation  with  respect  to  three

mutually  perpendicular  axes  and therefore  a  non-linear  molecule  possesses  three

rotational degrees of freedom.

(c) Vibrational degrees of freedom  make up the remaining 3N-5 degrees of

freedom for linear molecules and 3N-6 degrees of freedom for  non-linear

molecules. These specify the displacement of the atoms from their equilibrium

positions due to vibration. 

4.3 Normal  modes  of  vibrations are  associated  with  each  vibrational

degree  of  freedom  and  have  characteristic  vibrational  frequencies.

Thus  for  linear  and  non-linear  triatomic  molecules  there  are,

respectively,  four  and  three  vibrational  degrees  of  freedom and  the

normal modes associated with them are classified as:

Fig. 6  Normal modes of vibration of a triatomic molecule.

Equipartition of Energy:  

According to the kinetic theory of gases, the average kinetic energy per molecule for

an ideal gas is given by



Expt 3a                        Heat Capacity Ratio for Gases (  g  )                             13  

Since the energy of a monatomic gas is entirely kinetic energy of translation we can

write for the energy per mole  

and thus for a monatomic gas

CV=U
T V

=3
2

R≈12.4 J mol−1 (23)

Why is this CV and not CP?

Polyatomic molecules possess internal degrees of freedom and the internal motions

will make a contribution to the energy of the gas, but to what extent?  A monatomic

gas  has  only 3 degrees  of  freedom (translation)  and if  we assume that  they are

independent of each other then they will each contribute 1/2 kT.

The principle of equipartition of energy states that each square term (e.g. 1/2 mu2
x

for the kinetic energy in the x direction) in the expression for the total energy of the

molecule contributes 1/2 kT to the total energy.

Rotational motions have rotational kinetic energy 1/2 Iw2 for each axis of rotation,

where I = moment of inertia about the axis and  w = angular velocity.  Thus each

rotational degree of freedom contributes 1/2 kT to the total energy.

Vibrational motions affect both the kinetic and potential energy, each of which can

be expressed by a square term (1/2 mu2  and 1/2kx2 where m is the reduced mass and

k is the force constant) and thus each vibrational degree of freedom will contribute

kT to the total energy.

1 / 2  m u  =  3
2

 kT2

(21)

U =  3
2

RT
(22)
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Thus according to the classical equipartition principle the molar energy of a diatomic

molecule will be 

and

The value observed is actually close to 21 J. mol-1 for most diatomic gases.  This is

the value to be expected in the absence of the vibrational degree of freedom. This is

a  quantum  mechanical  effect.   Thus,  classically,  one  can  gradually  "turn  on"

vibrational or rotational motions but quantum mechanically these motions increase

in jumps and it turns out that the energy required per jump for vibrational motions is

greater than the average energy available per molecule at room temperature.  Thus

the vibrations are "inactive".  The rotational energy quantum jump is much smaller

and rotational motions are "active" at room temperature but at lower temperatures

these can also become "inactive". 
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U (total) =  U (trans) +  U (rotation) +  U (vibration) (24)

V
-1C  =  3.5 R =  29.1 J.  mol (26)

U =  3
2

 RT +  RT +  RT =  3.5RT
(25)


