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Variable high order finite difference methods are applied to calculate the action of molecular
Hamiltonians on the wave function using centered equi-spaced stencils, mixed centered and
one-sided stencils, and periodic Chebyshev and Legendre grids for the angular variables. Results
from one-dimensional model Hamiltonians and the three-dimensional spectroscopic potential of
SO, demonstrate that as the order of finite difference approximations of the derivatives increases the
accuracy of pseudospectral methods is approached in a regular manner. The high order limit of finite
differences to Fourier and general orthogonal polynomial discrete variable representation methods
is analytically and numerically investigated. 00 American Institute of Physics.
[S0021-960600)00247-9

I. INTRODUCTION the products. The values bf(x;) are zero forj # k and one

for j=Kk by construction. The function can then be approxi-

In a previous articlé,herein referred as Paper |, we re- mated as

ported results from the application of a variable order finite N
difference (FD) method to approximate the action of a
Hamiltonian operator on the wave function in the time- F(X)%PN(X):gl F(xi)Li(x). @
dependent Schrdinger equation or the Hamiltonian matrix
elements in the time-independent picture. One-, two-, andPy is a polynomial of ordeN—1. In Paper | we discussed
three-dimensional model potentials in Cartesian and radidiow FD is related to the sinc-DVR method by taking the
coordinates were used to investigate the accuracy and tHimit in the two above-mentioned senses.
stability of these methods, whereas in a companion paper, (1) An infinite order limit of centered FD formulas on an
the time-dependent Schtimger equation was solved for the equispaced grid yields the discrete variable representation
van der Waals system ArThe impetus for this project was (DVR) result when we use as a basis set the sinc functions
given by recent advances in high order finite difference apf Sinc(x)=sin(mx)/7x].>° Although, this limit is defined for-
proximations. We mainly refer to the limit of infinite order mally asN, the number of grid points used in the approxi-
finite difference formulas with respect to global pseudospecmation, tends to infinity, some theoretical consideratiass
tral methods(PS investigated by Fornbergand Boyd’'s  well as numerical resuftdead us to expect that the accuracy
work which views finite difference methods as a certain sunof the FD approximation is the same to that of the DVR

acceleration of pseudospectral technicfties. method as we approach the full grid to calculate the FD
Finite difference approximations of the derivatives of acoefficients.
function F(x) can be extracted by interpolatirfg(x) with (2) FD can also be viewed as a sum acceleration method

Lagrange polynomialsP(x). This allows one to calculate which improves the convergence of the pseudospectral
the derivatives analytically at arbitrarily chosen grid pointsapproximatiorf: The rate of convergence is, however, non-
and with a variable order of approximation. The Lagrangeuniform in the wave number, giving very high accuracy for

fundamental polynomials of ord&—1 are defined by low wave numbers and poor accuracy for wave numbers near
N N the aliasing limi® However, this does not cause a severe
Lk(X)ZH '(x—xj)/ H ,(Xk_xj); k=12... N, pr::_xctice_ll limitation, sin_ce, by ipcreasing the number of grid

j=1 j=1 points in the appropriate region we can have an accurate

(1) enough representation of the true spectrum in the range of

where the prime means that the tefmk is not included in interest: This is one property which makes FD useful as an
alternative to the common DVRand other PS methods such

as fast Fourier transform techniqu@sT).8°

dCurrent address: Instituto de Matematicas y Fisica Fundamental, Consejo ; ;
Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid, Spain. Thachuk and SChaﬁm their StUdy on methods for cal

YAlso at Department of Chemistry, University of Crete, Iraklion 711 10, C_Ulating thermal _rate Coefﬁ_Ci_entS_With flux correlation func-
Crete, Greece. tions also used high order finite difference methods. Employ-
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ing a one-dimensional symmetric Eckart potential theynians describing molecule—surface encounters, atom-—
examined and evaluated several methods for the time propaliatom, or four-atom chemical reactions require the use of
gation and the spatial derivative calculations required by thengular variables, and therefore, periodic boundary condi-
action of the Laplacian on the wave function. tions. It is interesting to see if FD methods can be applied to
Parallel to our work, Mazziottt has applied Boyd's sum angular variables with the same effectiveness demonstrated
acceleration methods on a one-dimensional Morse functiorfor radial variables and to investigate if the same limits can
In fact, under the name spectral difference he examines foure approached here. In this context, it is worth studying FD
different methods; the truncated sinc, Boyd's Euler and finiteapproximations with different grid distributions. Doing this
difference sum acceleration methods, and the Lagrange digve can compare some local approaches to the solution of the
tributed approximating functionalLDAF) approach of Schralinger equation with well established DVR methods
Kouri and co-workers? used for angular variables, such as Legendre or Chebyshev
The current interest in finite difference methods is fully orthogonal polynomial expansions which lead to nonuniform
justified when solutions of the Schdimger equation are re- grids compared to the Fourier method which is based on
quired for multidimensional systems such as polyatomiguniform grids.
molecules. The present most popular methods employed in  The purpose of the present article is to investigate the
quantum molecular dynamics are the fast Fourier transforndccuracy and stability of variable high order finite difference
and the discrete variable representation techniques. FFT geApproximations to molecular-type Hamiltonians which usu-
erally uses hypercubic grid domains which result in wastechlly employ curvilinear coordinates including angle vari-
configuration space sampling. A large number of the selected@bles. Uniform and nonuniform stencils are examined. The
configuration points correspond to high potential energy valarticle is organized in the same fashion as Paper I. In Sec. II
ues, which do not contribute to the eigenstates that we ar&e extract the limit formulas for a periodic angle variable
seeking. Global DVR methods allow us to choose easily thénd study simple well-known model systems. We will make
configuration points which are relevant to the states we wan@nalytical connections between FD and the Fourier method,
to calculate, but still, we must employ in each dimension all@s well as common orthogonal polynomial DVR methods. In
grid points. Local methods such as FD have the advantage%ec- [l we study a real triatomic molecule, the sulfur diox-
of DVR but also produce matrices with less nonzero matrixde, Using a spectroscopic potential in Jacobi coordinétes.
elements provided that the PS accuracy is achieved at lowéfibrational levels of S@ have been calculated by Guo and
order than the high order limit. co-workers up to 4 eV above the zero-point energy
There are some other benefits for FD with respect tdZPB'“™° with filter diagonalization techniques™® and
global pseudospectral methods. Convergence can be exafYR for the Hamiltonian. We do not compute accurate vi-
ined not only by increasing the number of grid points butPrational eigenenergies but we investigate the stability in
also by varying in a systematic way the order of approximaiime evolution of |n|t!al Gaussian wave packets. Finally, in
tion of the derivatives. Finite difference methods may incor-S€C- IV we summarize the conclusions of the present and
porate several boundary conditions and choose the griirevious studies.
points without necessarily relying on specific basis functions.
The topography of the multidimensional molecular potential
functions is usually complex. The ability of using non equi- IIl. LIMIT METHODS
spaced grids is as important as keeping the grid points ig\. Periodic uniform grids
accordance to the chosen energy interval. The computer )
codes for a FD representation of the Hamiltonian can be  Grid representations of the Schiinger equation can be
parallelized relatively easily, since the basic operation is thé@btained by first defining global smooth basis functions,
multiplication of a vector by a sparse matrix. Parallelization®;(X), to expand the wave function as

is an obligatory task when we deal with systems of more N
than three degrees of freedom and we look for highly excited W (x)~W(x)= >, aj (). 3
states. j=1

Sinc-DVR methods are appropriate for radial variablespifferent global basis functions define different pseudospec-
where the wave function must vanish at the edge of the grigral methods. From such so-called finite basis representation
[V(R)=0 for a=R=b]. The FD weights required in ap- (FBR) we can transform to a cardinal set of basis functions,
proximating the derivatives of the wave function close to theuj(x), or the discrete variable representati@VR) as it is
borders of the grid can be calculated for this boundary conysually called, by choosiny grid points,x;, at which the
dition by extending the grid intervals with fictitious points. wave function is calculated. The cardinal functions obey the
Another type of radial coordinates frequently encountered ins-Kronecker property
molecular dynamics are those which cannot be extended
with fictitious points. Such a variable is the distance of an uj(x) =4, (4)
atom from the center-of-mass of a diatomic molecule in Jaso that the wave function is represented in the set of grid
cobi coordinates which may start from zero for linear con-points as

figuration. In this case it is necessary to employ one-sided N
FD formulas.
W(X)= P(xi)u:(X). 5
Most of vibrational Hamiltonians, however, or Hamilto- N(X) 121 ()5 (%) ©
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Notice, that the expansion coefficients are the exact functiotion between the Fourier cardinal basis and the sinc basis: a
values at the chosen grid points. Fourier cardinal basis can be seen as a sum of sinc basis

The transformation from FBR to the cardinal basis set isfunctions repeated periodically with periodicityr2i.e.,
unitary and the new basis is given in terms of the old one by ) Koo

SiN(x—x;)/2] .
N ———— = > sind(x—x;+2mk)/Ax], (13
_ o Nsin (x—xj)/12] k===

Ui =2 (ilupgi0, j=1,...N. (6)
Ax=2x/N in this case and we have used the fraction expan-
A common procedure now is to evaluate the matrix elementsion /sin(mx)=={="_.(—1)¥/(x+k).?? Since sinc functions
(¢ilu;) by Gaussian quadrature, such that the integral beare the infinite order limit of an equispaced FD, the corre-
comes exact for a polynomial-type basis. A number of dif-spondence now is thaeriodically repeatedD stencils will
ferent approximation methods can be obtained by definingend to the PS limit of Fourier functions as the number of
different basis functions and quadrature rf%.In general,  grid points in the stencil approaches the total number of grid
using the 5-Kronecker property olij(x) [Eqg. (4)] we can  points in one period. Also, because equispaced FD can be

write considered as a robust sum acceleration scheme of a sinc
N function series, we expect the same convergence properties
(¢ilu))= > Wi (X )U; (X ) =W 7 (), (77 ofthe FD approximation to the Fourier series as the one we
k=1 found for radial variables in Paper |I.

To demonstrate this we used a simple model, which is
5\owever instructive since it appears in many vibrational
Hamiltonians with azimuthal symmetry: a one-dimensional

where the grid pointx, and the corresponding weightg,
depend on the chosen quadrature rule. A widely used set
basis functions in the solution of the Sctimger equation is

the Fourier set rigid-free rotor, represented by the Scilimger equation
(0= ¢<2m),
1 2 42
(X)= ——exp(i2mjx/L), (8) At dW
i 2n Ri2m] T EW. (14)
wherelL is the length which defines the periodicity of the 1o ayact eigenfunctions and eigenvalues ake ()
function andj=—M, ... ,0,... M. We can transform these :(]Jm)eim({) andE=#2m?/2ur2, m=0,+1+2,. .., re-

functions to a set of cardinal functions by using a uniform
grid in x with an odd number of pointsN=2M+1, and
employing Chebyshev quadrature. This results in rbal
trigonometric series>°

spectively. Notice that a numerical solution using Fourier
functions is exact in this case, and so the pseudospectral
solution with Fourier cardinal functions, since they have the
form of a cosine series and the Chebyshev quadrature to

W M evaluate the transformation matrix E(), is also exact. A
uj(x)= ﬁ 1+ 22 cog27k(x—x;)/L)|. 9 FD should also converge to the exact result but faster than
k=1 the cosine series.
The weights are equal toj=L/N for Chebyshev quadra- By representing the wave function M, grid points and

ture. Assuming for simplicity thak is an angular variable evaluating the second derivatives by interpolating the func-
with periodL =27, and using the trigonometric identity tion with stencils ofN-points (3<N=<N,,) the kinetic en-
ergy nonzero matrix elements have the form

M .
1 sif(M+1/2)«
E+ 2 cogka)= r[z(.—lz))], (10 h2 @) ]
k=1 sina Tk,j:_mbk,j , 1=<k=Ny and —M=<j—ksM,
Eq. (9) gives the Fourier cardinal functions (15
SiMN(x—x;)/2] whereN=2M + 1.
uj(x)= : (11

We applied both methods, Fourier-DVR with weights
b?) given in the Appendix, and variable order FD approxi-

The &-Kronecker property can be immediately checked,ations with periodic boundary conditions by choosing the
and we can derive analytically the derivatives of the Waveyrid points as

function ¥ (x) when it is expanded in the cardinal functions

N'sin (x—x;)/2]"

uj(x) [Eq. (5] . dnai 1<1, .
d™p () N " lgin I>NJ
=2 b{PW(x) (12 i :
dx™ ey, =1 k. 17 The weights needed in the FD method are computed
2k

with Fornberg’s algorithn?® This is an efficient algorithm to
with bf(T) the mth derivative ofu;(x) evaluated ak=x,. In  compute any derivative, at any order and at arbitrarily spaced
Appendix | we give the first and second derivatives of thegrid points. Details can be found in Fornberg’s bddk.Fig.
Fourier cardinal functions,u;(x), for periodicities L 1 we show the decimal logarithm of the fractional error
=, 2. (Eapp/Eex—1) for the eigenvaluem=+20 using FD ap-
We can understand the correspondence between Fouriproximations of increasing ordésolid line). The Mth order
cardinal functions and finite differences by recalling a rela-approximation means that we use stencilsNof2M +1
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0 2 2 d
_ —x2 I, I
_22/.” (1 X )d—xz 2XdX s (18)

2] and the singularity is eliminated.

= . Using an orthogonal polynomial basis in Eq§) and

£ SNNAN A (7), =P\, to obtain the cardinal basis functions, we take
g N LAY % \\“/1\\‘ " N

] uj(x)=wjk21 Pu(X))Pe(x), j=1,...N. (19)

o0

=]

-6 X; are the zeros of the polynomiBl, ; ; of degreeN. Notice,
that in Eq.(19), the summation starts from 1 which corre-
sponds to the constant term in the polynomial. Herigg,
denotes a polynomial of degred—1. The &Kronecker
o TRk Bt BRSO % W property of the cardinal functions is satisfied by the
Christoffel-Darboux theorem for orthogonal
FIG. 1. IDECimf'z(')ngtfghmH Of_ltthe_fracgonli') e"‘?Ea(';\)lp/ Eeézl)_dfor _thte polynomials’?’ To show that the FD formulas are also the
B v o amionin, S, U S5 75202 imitof rthogonal polynomial expansions in DVR methods,
cardinal basigdashed ling We used the parametess=1,r=1 ina.u., and W€ have to establish the equivalence between the DVR func-
the orderM corresponds to stencils witi=2M + 1 grid points. tions, Eq.(19), and the Lagrange fundamental polynomials,
L;(x), of orderN—1.
First we note, that by the definition of Gaussian quadra-
points. For comparison in Fig. 1 we plot the result of trun-ture,L;(x) satisfy the orthogonality property
cating the Fourier cardinal basidashed ling This means b
that we do not use the total set of grid point$,{) to rep- f Li(x)L;00dx=w;8;, i,j=12,....N, (20)
resent the wave function but a subset\bfwhich is also the a
size of the stencil in FD. We employed a grid Mf,=81
points, so that the firsh=40 eigenvalues are exactly calcu-
lated (notice that they are doubly degenejafehe important
point here is that we can accurately represent an eigenval
in the medium range of the spectrum by using significantly N
less grid points than the required in the pseudospectral ap- F(x)wZ FP(X), (21
proximation. Truncation of the PS series with even only a k=1
few points less than the full series r(_asultg in significant eryyhere the coefficients are
rors, but we need only half of the grid points for the exact

-8

if they are evaluated at the zeros of some orthogonal poly-
nomial. Then, an expansion of a functibifx) in orthogonal
LPeolynomials can be represented with the series

solution with FD. b
Fr=| F(X)P(x)dx, (22
a
B. Periodic nonuniform grids and thereforeF (x) can be defined through the integral
In Hamiltonians describing vibrational motions of mol- b
ecules, it is customary to find the polar angle dependent op- F(x):f F(x)Kn(xj,x)dx; . (23
erator as a
n? [ d? d The kernelKy(x;,X) is defined by
__ZZMI’ ﬁz‘f'cota@ , (17) N
with 0<6#< . There have been several adaptations of the ~ Kn(X] ’X):k; Pi(Xj) Pi(X). (24)
Fourier—PS method for this particular oper&tbf® however
it is not very efficient since the singularities =0 and 7 On the other hand, expandifgx) in terms of Lagrange

can cause numerical instabilities. For instance, one usualljundamental polynomials, Eqél) and(2), we obtain
has to resort to shifting and symmetrically extending the grid
aroundd= 7,?*?®and constructing explicitly unitary propa-
gators for stable propagation in time. The instability comes F(X):gl F(Xi)Lk(X)
also from the fact that the transformation, E@), is not
unitary in the polar angl® for Fourier function$® b
The optimum DVR methods to be used with this opera- _J
tor are those which employ trigonometric orthogonal poly-
nomials of Legendre- and Chebyshev-type as the finite basigking into account the orthogonality relation, EO).
representation. Since the argument of these polynomials iSince, the kernels in Eq$23) and (25) must coincide, we
Xx=co0s#6, the Hamiltonian operator takes the form have that

N

N
F(xj)wj’lkzl Le(X)) L) dx; , (25)

a
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N
LJ-<x>=w,-k§l Pi(Xj) Py(X), (26)

using the 6-Kronecker property oL (x). Hence, we have
shown that when we use tiNeroots of thePy, ; polynomial
as interpolating grid points, the Lagrange fundamental poly-
nomials are the cardinal functions that correspond to the or-
thogonal polynomial$,(x), k=1,...N.

We experimented with several grid distributions to nu-
merically solve the eigenvalue equation

h? [ d? d
- _Z/er d—02+C0t6@

I
W
I

log (fractional error)

9

C1(1+1)
‘I’—W\P. (27)

_1’2
. . . o * Order |
First, we tried a uniform grid distribution i® by means of

Fourier. Although, in this simple case with no potential en-FIG. 2. Decimal logarithm of the fractional error for the eigenvallies
ergy the Fourier basis also gives the exact refuting 10 20, and 30 of the Hamiltonian, E7) using FD approximations of

. . . . . different order in a Legendre grid with mixed centered and one-sided sten-
slightly different functions than those in E.1)], since now

] A S cils (solid lines. Also the Legendre-DVR result fdr=20 using the basis
the interval ing has periodicityr (see the Appendjxthe FD  functions, Eq.(19), is plotted with a dashed line for comparison. The total
convergence is very poor due to the bad approximations awumber of grid points used N =41.

the borders of the grid, aroungl=0 ands. We can think of

it as Lagrange polynomials if present “cusps” at the bor- L . ) ]
ders of the grid, but the true solutiofisegendre polynomi- tions (solid |In63. with thosg of a Leg.endre gr|d_ and mixed
al9 are a series in ca§ and therefore, have a smooth be- centered, one-sided stencildashed lines Practically, the
havior around 0 andr. A much better representation is 'esults are the same.

achieved if we make the transformatior cosf as men-

tioned above. Notice, that still we can use a uniform grid inlll. APPLICATION TO SO,
0, since, if we choose as grid points

2 14

To explore the performance of the above-described

1 methods and the computer codes that we have developed in a
w(i— —) realistic molecular potential, we have chosen a typical tri-
2 : .

6 =—"—, (28)  atomic molecule, sulfur dioxide. Recently, extended three-

N dimensional quantum mechanical calculations for the vibra-

and then by making the change of the variable f¢Hamil- tional lﬁveéli_(l)g th_|s mﬁlecule were ce_lrrled OUF ?y fG;O an_d
tonian Eq.(18) instead of Eq(17)], we have a Chebyshev- co-worker 3 using the spectroscopic potential of Kauppi
DVR metﬁod ' and Halonert® The potential is expressed in terms of the

The FD implementation can be done in two ways: at thebend .angle and Morse ra(_jial yariables and repro_duces the
end of the interval, where we need to supply mofe gridegpenmentally obsgryed V|brat|onall Ievgls up to hlgh ener-
points for caIcuIatin:q the weights than those at our disposa%iﬁél?fecgf trr?gtsgliﬂfa?ig:se gevx;wblr?;lor;i?tle?tgi(gezr?;}izsg
we can use a mixed centered and one-sided FD scheme and - By applying g
keep the order constant along the grid. That is, we take cen-
tered FDs until we reach the edge of the grid where we apply
one-sided stencils. The other possibility is to impose the pe- -1
riodic boundary conditions, Eq$16), in the calculation of
FD weights.

In Fig. 2 we show the results for three eigenvalués (
=10, 20, and 3Pcalculated with FD for several orders of
approximation,Mth, with mixed centered and one-sided
stencils defined on the total number of Legendre grid points
Nt=41 (the roots of the Legendre polynomial of 41st de-
gree. Truncated Legendre-DVR calculations of the20
eigenvalue are shown with a dashed line. We remark that
there are no noticeable differences by using centered FD
with periodic boundary conditions or mixed centered, one-
sided stencils. We can see the bad convergence for high
wave numbers mentioned in the introduction, although the
resu!t With.FD is much bett.er than truncation for the low andFIG. 3. The same as in Fig. 2 but using FD on a Chebyshev grid with
medium eigenvalues. In Fig. 3 we compare the FD calculaperiodic boundary conditiongsolid lines. The results with a Legendre
tions with a Chebyshev grid and periodic boundary condi-mixed centered, one-sided grid FD are plotted with dashed lines.

log (fractional error)

-9

-13

2
® Orabiovy |
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tion algorithmst’~° the researchers were able to computeTABLE I. Conservation of the normN;) and total energyE) for several

about 5000 vibrational levels spanning an energy rande u tgder finite difference approximations during the propagation of wave
b 9 ay ge up packet wpl(see text The grid distributions in §,R,r) are denoted with the

25000cm*. The operationHW, was computed by dis- symbols,(u) for centered, equispaced stencil) for mixed centered and
cretizing the Radau coordinates in sinc-DVR for the twoone-sided stencilg]) for Legendre, andc) for Chebyshev grid points. The
stretch modes and in a Legendre grid for the bend modeémaginary part of the energy is the value :at the end of the iterations. The
Introducing symmetrized stretch coordinates the maximuniferations are counted by th_e total numperl—blf operations. The tot_al run
grid was (60< 60) points and for the angle 180 points. Sta- times are 1.14 ps for ihe grids of 64 points and 2.03 ps for the grids of 128
L. . . N . points. The numbers in parentheses are the power of ten.
tistical analysis of the energy level spacing distributions
showed largely regular behavitt?®-31
The purpose of our calculations is not to reproduce thé/ethod  Grid  Points
eigenvalues of Ma and Giibbut instead to propagate in
time wave packets on the same potential function for testinﬁ_FT uuu 64 14€3) 17(=3)  3.8(-6) 342016
the accuracy and stability of FD methods described in th D-2 o gf 118&; ﬁg:;; - i';((:g; ggﬂ;
previous section. Thus, we solve the time-dependent Schrgp_; cuu 64  1.068) 53(-8) -36(—10) 61440
dinger equation FD-12 cuu 64  1.0(8) 4.2(-8) —1.1(-9) 61440
FD-2 uuu 128  1.0¢8) 1.0(-8) —4.4(—13)° 538624
Jv(t,q) . . FD-2 cuu 128  1.0(8) 2.1(-8) 1.8(-10) 223232
ih —— =H(@W¥(t,4). (29 FD4  cuu 128 1.0(8) 1.1(-8) 62(-11) 221184

N —12 E_ 1°  Imaginary Aw
No Eo

The vectord denot llectively. the J bi rdinat Ny is the norm at time¢=0, andN, the norm at the end of iterations.
€ veclorq denotes, collectively, the Jacobl Co0 a eSon is the total energy at time=0, andE the energy at the end of iterations.

R,r, and ¢, which describe the internal motion of the mol- ethe accuracy of the norm and energy is higher than<10® which is
ecule;R is the distance from S to the center-of-mass ¢f O printed out.

r is the distance between the two oxygen atoms, @ride

angle betweerR andr:

. B2 92 h? 92 0,=0.05A"1 ando,=0.08rad . Both wave packets are
H=— 2ug IRZ 2u, ar? symmetric with respect to the lin@=90° and with the OO
w20 1 L 7 ; bond at its equilibrium value. Hence, we expect e_xciiation of
_ _(_2 n _2) (_2 +coto—| +V(Rr,0), the'symmetric stretch and bend states but no excitation of the
2 \purR® u,re) 196 a0 antisymmetric states.
(30) From the time propagation of the initial wave packet
we calculate the autocorrelation function,C(t)
where,ur andu, are the reduced masses for S-a8dd OO, =(W¥(0,G)|¥(t,q§)), the Fourier transform of which reveals
respectively. the eigenstates which overlap with the initial wave packet.

The initial number of grid points for the three variables The stability in the time propagation was checked by the
is Ny,t=64 or 128 points in each dimension. The 128-pointnorm of the wave packet, which should be one for an initial
grids would require vectors of more than two million ele- normalized function, and the conservation of the total en-
ments if cubic grids had to be used. However, taking intoergy. Both quantities should be conserved for bound mo-
account that the wave function is zero at those grid pointsions. The imaginary part of the energy was also printed out
where the potential value is higher than a threshold, we storas an indicator of the stability and accuracy of the calcula-
only a fraction of them, thus reducing substantially the sizetion.
of the arrays. The energy cutoff was taken at 3 eV but some Calculations have been performed with variable order
results were checked with 4 eV as well. FD and several grid distributions which are denoted with the

For the stretchr coordinate, uniform equispaced grids symbols,(u) for centered, equispaced stencil®) for mixed
are used. The energy to linearize the molecule is more than éentered and one-sided stencils,for Legendre, andc) for
eV, higher than the energies we have considered. Thus, wehebyshev grid points. Thus, the trididiu), for example,
assume that the wave function is zeroRst0 and apply denotes that Legendre points were used for the bend coordi-
equispaced uniform distributions for this coordinate. Nevernate and centered, equispaced grids forRhandr stretch
theless, tests with mixed centered, one-sided stencils are alsoordinates, respectively. All calculations were performed
examined. For the angle variable we take uniform, equiswith PCs of 450 MHz and 512 MBytes memory.
paced grids with zero boundary conditions as well as Cheby- In Tables | and Il we show the relative errors in the norm
shev and Legendre grids with periodic boundary conditionsand energy after propagating the wave packets, wpl and

The time-dependent Schiinger equation was numeri- wp2, respectively. The time evolution was for 1.14 or 2.03
cally solved using a Chebyshev expanSidor the time ps. FFT calculations are also presented for a cubic grid with
propagator. Two initial Gaussian wave packets are chose®4 points in each dimension. From Tables | and Il we can see
which we label (wpl), with center at R=0.915A, that FFT preserves the norm and the energy at the third deci-
r=2.4768 A, 6=90°, and potential energig=0.7480eV, mal point. In the finite difference approximation, the ort#r
and the wave packefwp2 with center R=1.015A, corresponds to stencils withi=2M + 1 points. We find no
r=2.4768A, 9=90°, and potential energ=1.5708eV. significant differences between Chebyshev and Legendre
The widths for both Gaussians wereg=0.05A"1, grids for the angle variable. Increasing the number of grid
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TABLE Il. Conservation of the norn,) and total energy&) for several 0.2
order finite difference approximations during the propagation of wave
packet wp2see text The grid distributions in §,R,r) are denoted with the
symbols,(u) for centered, equispaced stencils)) for mixed centered and
one-sided stencilg]) for Legendre, andc) for Chebyshev grid points. The
imaginary part of the energy is the value at the end of the iterations. The

iterations are counted by the total number¥ operations. The total run 2
times are 1.14 ps. The numbers in parentheses are the power of ten. %
£
) . N E . . i
Method Grid Points ——12 — —1b Imaginary H¥ i
No = !
FFT uuu 64 1.3¢3) 1.4(-3) 1.9(-6) 260096 ; !
FD-2 cmu 64 1.068) 1.0(—8) —8.3(—10) 59392 A | ’
FD-4 cmu 64 1.068) 5.8(-8)  4.0(-10) 59392 0, > 0
FD-7 uuu 64 1.0¢8) 1.0(-8) 2.7(-13)° 153600 T/tu.

C
FD-7 cuu 64 1.0¢8)  1.0(-8) 6.7( 1l)c 61440 FIG. 5. Correlation functions calculated with the initial wave packet wp2 at
FD-9 cuu 64 1.0¢8) 1.0(-8) 3.4(-10) 61440 second-order FD approximation orf@iu) grid and 128 initial pointgsolid
FD-9 luu 64  1.068) 1.0(-8) —55(-11)° 61440 |ine), seventh-order FD with a 6€uy initial grid (dashed ling and the
FD-2 cuu 128  1.0¢8) 1.0(-8) —3.2(-11)° 159744  FFT on a 64 orthogonal grittiotted ling. The time unit is 0.010 180 44 ps.
FD-7 cuu 128 1.0¢8) 1.0(—8) 3.1(-12)° 157696

™No is the norm at timd =0, andN, the norm at the end of iterations. 534 the |abels at the top of the figure are the assigned quan-
E, is the total energy at time=0, andE the energy at the end of iterations.

°The accuracy of the norm and energy is higher than1.0 ® which is t.um numbers for th&-stretch, b?nd' ar?d'StretCh' respec-
printed out. tively. The spectrum was obtained with the wave packet
wpl, and with a second-order FD on(auu) grid of 128
initial points for each coordinate. Obviously, techniques such
points to 128, the imaginary part of the energy decreasess filter diagonalization must be applied for an accurate de-
even for low order approximations. As has been shown intermination of the eigenlevels. Here, it is not our purpose to
Paper I, higher accuracies are achieved either by increasirextract exact eigenvalues, but rather to investigate the stabil-
the order of approximation or the number of grid points.ity of finite difference approximations in the time evolution
Finally, we point out that mixed centered and one-sided gridef wave packets. It should be emphasized that symmetry
lead to larger instabilities as the order of approximation in-considerations which speed up ordinary DVR calculations
creases. Taking a uniform grid for the angle in a smallercould also be applied in FD methods.
interval than[0,77] we obtain a representation of the wave In Fig. 5 we compare the correlation functions of the
function with more grid points, and that explains the largewp2 wave packet calculated with second-order FD écua)
number ofH ¥ operations for théuuu) grids in Tables | and  grid and 128 initial pointgsolid line), seventh-order FD with
ll. Overall, we have found that centered equispaced grid& 64 (cuu initial grid (dashed ling and the FFT on a 64
give the most stable and accurate results. orthogonal grid(dotted ling.
Part of the spectrum is shown in Fig. 4. The dashed lines In Fig. 6 we compare the power spectra in the energy

correspond to the eigenenergies published by Ma andGuointerval of 1.5 to 1.7 eV obtained after propagating the wp2
for 4.17 ps and using fourth¢dotted ling, fifth- (dashed

& & &L 85 I ISV
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FIG. 4. Comparison of some eigenenergies obtained by Ma and(Refo FIG. 6. Convergence of the power spectra obtained with wave packet wp2
15) (dashed linesand finite difference at second-order orfuaiu) grid and and fourth-(dotted ling, fifth- (dashed ling and ninth{solid line) order FD

128 initial points for each coordinate. The numbers at the top denote then a 64(cuu grid. Higher order approximations give peaks which coincide
quantum numbers for the the-stretch, bend, and-stretch, respectively. with that of ninth-order.
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TABLE lll. The intensities of the four more intense peaks of Fig. 6 at high order FD approximations after
propagating wp2 for 4.17 ps on @duu) grid.

Energy FD-9 10 %) FD-11 (X 10 3) FD-13 (x107%) FD-15 (X 107%)

155152 0.221 029 0.232 002 0.235093 0.236 147
1.61203 0.173382 0.169 127 0.167 414 0.166 750
1.62393 0.135979 0.127 174 0.124 286 0.123204
1.685 44 0.218 233 0.237 179 0.242 576 0.244 425

line), and ninth-(solid line) order FD on a 64cuu) grid. For  tation of the wave function and result in stable time propa-
higher order approximations the peaks have been convergeghtion. Particularly, for S@with a triangular equilibrium
within the Fourier transform resolutidi®.001 e\j. In Table  geometry, a uniform grid in a proper interval gives a better
[l we show how the intensity varies for four peaks by in- representation of the wave function than the Legendre or
creasing further the order of approximation. Chebyshev grid with points accumulated at the end of the
Finally, in Fig. 7 we plot the wave packet wpl after interval. Finally, mixed centered, one-sided stencils of high
integrating for 1.54 ps with second-, fourth-, seventh-, andbrder approximations lead to instabilities. We find practically
twelfth-order FD approximations on a 64iuu) grid. The the same results using either Legendre or Chebyshev grid
projection of the wave function on thed(R) plane inte- points.
grated over the coordinate is shown. We can see, that for ~ From Paper | and this work the following advantages of
converged wave functions we must use high order FD. the FD approach in solving the Schlinger equation
emerge:

IV. CONCLUSIONS (1) finite differences allow a systematic search of the con-

vergence properties with respect to the number of grid
points as well as the order of approximation of the de-
rivatives;

we can use a large number of grid points for better rep-
resenting the wave function and save computer time and

Variable high order finite difference algorithms for cal-
culating the derivatives in a molecular Hamiltonian have
been studied and tested for stability and accuracy by solving
the time-dependent and time-independent &tinger equa-  (2)
tion with angular variables. Relations of high order FD limits

to Fourier and orthogonal polynomial discrete variable rep-

resentations have been analytically established and numefid)

cally investigated. The importance of these limits is that, by
using a single code to generate the FD weights, we can sys-

tematically explore a variety of different approximations (4)

ranging from low order FD to sinc, Fourier, and orthogonal
polynomial DVR, simply giving different grid distributions

memory by employing low order approximations;

finite differences with stencils equal to the total number
of grid points are equivalent to the most common PS
methods(sinc, Fourier, Chebyshev, Legengre

truncated PS methods are generally bad approximations
whereas finite differences show smooth convergence be-
havior by increasing the order;

there is flexibility in choosing the grid points without

as input and imposing the proper boundary conditions. Here)
necessarily any dependence on specific basis functions;

we have examined centered and mixed centered, one-sided ' . : .
uniform grids, as well as Chebyshev and Legendre periodi¢6) algorithms for a fast generation of the weights in the FD
grids. From the applications we have made up to now we approximations of the derivatives by recursion relations

find that the centered equispaced grids give a good represen- are available; and
(7) the computer codes can be parallelized.

Further work on tetratomic molecules is in progress.
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APPENDIX

For completeness of the article we provide here the co-
efficients b =d™u;(x)/dx™|,, for obtaining the first
(m=1) and secondri=2) derivatives of the Fourier cardi-
nal basis functionsi;(x) [Eqg. (11)] and with periodicityL .

1.65 1.45 1.5 1.55

Theta

FIG. 7. Projections of the wave packet wpl after integrating for 1.54 ps with

second-, fourth-, seventh-, and twelfth-order FD approximations. DistanceS
in A and angle in radians.

imilar equations were first extracted by Melfeand later

on by Colbert and MilleP
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2 .
T(—l)'/(ZSIr(Iw/N)) l=+1,+2,...
b= (+1%N),(*2=N). .. periodically extende (A1)
0 [=0,£N,£2N, ...
with | =j—k, and
([ 27\2 3
(T) (—1)"*tcog I w/N)/(2sirk(I7/N)) 1=%1,%2,.
+1+ +2+
o (£1=N),(x25N)... | (A2)
2m\?1
—] —=(1-N? I=0,£N,=2N, ...
\ ( C ) N )
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