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High order finite difference algorithms for solving the Schro ¨ dinger
equation in molecular dynamics. II. Periodic variables

Raul Guantesa) and Stavros C. Farantosb)

Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas,
Post Office Box 1527, Iraklion 71110, Crete, Greece

~Received 10 May 2000; accepted 20 September 2000!

Variable high order finite difference methods are applied to calculate the action of molecular
Hamiltonians on the wave function using centered equi-spaced stencils, mixed centered and
one-sided stencils, and periodic Chebyshev and Legendre grids for the angular variables. Results
from one-dimensional model Hamiltonians and the three-dimensional spectroscopic potential of
SO2 demonstrate that as the order of finite difference approximations of the derivatives increases the
accuracy of pseudospectral methods is approached in a regular manner. The high order limit of finite
differences to Fourier and general orthogonal polynomial discrete variable representation methods
is analytically and numerically investigated. ©2000 American Institute of Physics.
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I. INTRODUCTION

In a previous article,1 herein referred as Paper I, we r
ported results from the application of a variable order fin
difference ~FD! method to approximate the action of
Hamiltonian operator on the wave function in the tim
dependent Schro¨dinger equation or the Hamiltonian matr
elements in the time-independent picture. One-, two-,
three-dimensional model potentials in Cartesian and ra
coordinates were used to investigate the accuracy and
stability of these methods, whereas in a companion pap2

the time-dependent Schro¨dinger equation was solved for th
van der Waals system Ar3. The impetus for this project wa
given by recent advances in high order finite difference
proximations. We mainly refer to the limit of infinite orde
finite difference formulas with respect to global pseudosp
tral methods~PS! investigated by Fornberg,3 and Boyd’s
work which views finite difference methods as a certain s
acceleration of pseudospectral techniques.4

Finite difference approximations of the derivatives of
function F(x) can be extracted by interpolatingF(x) with
Lagrange polynomials,P(x). This allows one to calculate
the derivatives analytically at arbitrarily chosen grid poin
and with a variable order of approximation. The Lagran
fundamental polynomials of orderN21 are defined by

Lk~x!5)
j 51

N

8~x2xj !Y )
j 51

N

8~xk2xj !, k51,2,. . . ,N,

~1!

where the prime means that the termj 5k is not included in
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the products. The values ofLk(xj ) are zero forj Þk and one
for j 5k by construction. The function can then be appro
mated as

F~x!'PN~x!5 (
k51

N

F~xk!Lk~x!. ~2!

PN is a polynomial of orderN21. In Paper I we discusse
how FD is related to the sinc-DVR method by taking t
limit in the two above-mentioned senses.

~1! An infinite order limit of centered FD formulas on a
equispaced grid yields the discrete variable representa
~DVR! result when we use as a basis set the sinc functi
@Sinc(x)[sin(px)/px#.3,5 Although, this limit is defined for-
mally asN, the number of grid points used in the approx
mation, tends to infinity, some theoretical considerations3 as
well as numerical results1 lead us to expect that the accura
of the FD approximation is the same to that of the DV
method as we approach the full grid to calculate the
coefficients.

~2! FD can also be viewed as a sum acceleration met
which improves the convergence of the pseudospec
approximation.4 The rate of convergence is, however, no
uniform in the wave number, giving very high accuracy f
low wave numbers and poor accuracy for wave numbers n
the aliasing limit.6 However, this does not cause a seve
practical limitation, since, by increasing the number of g
points in the appropriate region we can have an accu
enough representation of the true spectrum in the rang
interest. This is one property which makes FD useful as
alternative to the common DVR7 and other PS methods suc
as fast Fourier transform techniques~FFT!.8,9

Thachuk and Schatz10 in their study on methods for cal
culating thermal rate coefficients with flux correlation fun
tions also used high order finite difference methods. Empl

ejo
in.
9 © 2000 American Institute of Physics
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ing a one-dimensional symmetric Eckart potential th
examined and evaluated several methods for the time pr
gation and the spatial derivative calculations required by
action of the Laplacian on the wave function.

Parallel to our work, Mazziotti11 has applied Boyd’s sum
acceleration methods on a one-dimensional Morse funct
In fact, under the name spectral difference he examines
different methods; the truncated sinc, Boyd’s Euler and fin
difference sum acceleration methods, and the Lagrange
tributed approximating functional~LDAF! approach of
Kouri and co-workers.12

The current interest in finite difference methods is fu
justified when solutions of the Schro¨dinger equation are re
quired for multidimensional systems such as polyatom
molecules. The present most popular methods employe
quantum molecular dynamics are the fast Fourier transf
and the discrete variable representation techniques. FFT
erally uses hypercubic grid domains which result in was
configuration space sampling. A large number of the selec
configuration points correspond to high potential energy v
ues, which do not contribute to the eigenstates that we
seeking. Global DVR methods allow us to choose easily
configuration points which are relevant to the states we w
to calculate, but still, we must employ in each dimension
grid points. Local methods such as FD have the advanta
of DVR but also produce matrices with less nonzero ma
elements provided that the PS accuracy is achieved at lo
order than the high order limit.

There are some other benefits for FD with respect
global pseudospectral methods. Convergence can be e
ined not only by increasing the number of grid points b
also by varying in a systematic way the order of approxim
tion of the derivatives. Finite difference methods may inc
porate several boundary conditions and choose the
points without necessarily relying on specific basis functio
The topography of the multidimensional molecular poten
functions is usually complex. The ability of using non equ
spaced grids is as important as keeping the grid point
accordance to the chosen energy interval. The comp
codes for a FD representation of the Hamiltonian can
parallelized relatively easily, since the basic operation is
multiplication of a vector by a sparse matrix. Parallelizati
is an obligatory task when we deal with systems of m
than three degrees of freedom and we look for highly exc
states.

Sinc-DVR methods are appropriate for radial variab
where the wave function must vanish at the edge of the
@C(R)50 for a>R>b#. The FD weights required in ap
proximating the derivatives of the wave function close to
borders of the grid can be calculated for this boundary c
dition by extending the grid intervals with fictitious point
Another type of radial coordinates frequently encountered
molecular dynamics are those which cannot be exten
with fictitious points. Such a variable is the distance of
atom from the center-of-mass of a diatomic molecule in
cobi coordinates which may start from zero for linear co
figuration. In this case it is necessary to employ one-si
FD formulas.

Most of vibrational Hamiltonians, however, or Hamilto
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
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nians describing molecule–surface encounters, ato
diatom, or four-atom chemical reactions require the use
angular variables, and therefore, periodic boundary con
tions. It is interesting to see if FD methods can be applied
angular variables with the same effectiveness demonstr
for radial variables and to investigate if the same limits c
be approached here. In this context, it is worth studying
approximations with different grid distributions. Doing th
we can compare some local approaches to the solution o
Schrödinger equation with well established DVR metho
used for angular variables, such as Legendre or Chebys
orthogonal polynomial expansions which lead to nonunifo
grids compared to the Fourier method which is based
uniform grids.

The purpose of the present article is to investigate
accuracy and stability of variable high order finite differen
approximations to molecular-type Hamiltonians which us
ally employ curvilinear coordinates including angle va
ables. Uniform and nonuniform stencils are examined. T
article is organized in the same fashion as Paper I. In Se
we extract the limit formulas for a periodic angle variab
and study simple well-known model systems. We will ma
analytical connections between FD and the Fourier meth
as well as common orthogonal polynomial DVR methods.
Sec. III we study a real triatomic molecule, the sulfur dio
ide, using a spectroscopic potential in Jacobi coordinate13

Vibrational levels of SO2 have been calculated by Guo an
co-workers up to 4 eV above the zero-point ener
~ZPE!14–16 with filter diagonalization techniques17–19 and
DVR for the Hamiltonian. We do not compute accurate
brational eigenenergies but we investigate the stability
time evolution of initial Gaussian wave packets. Finally,
Sec. IV we summarize the conclusions of the present
previous studies.

II. LIMIT METHODS

A. Periodic uniform grids

Grid representations of the Schro¨dinger equation can be
obtained by first defining global smooth basis function
f j (x), to expand the wave function as

C~x!'CN~x!5(
j 51

N

ajf j~x!. ~3!

Different global basis functions define different pseudosp
tral methods. From such so-called finite basis representa
~FBR! we can transform to a cardinal set of basis functio
uj (x), or the discrete variable representation~DVR! as it is
usually called, by choosingN grid points,xi , at which the
wave function is calculated. The cardinal functions obey
d-Kronecker property

uj~xi !5d i j , ~4!

so that the wave function is represented in the set of g
points as

CN~x!5(
j 51

N

C~xj !uj~x!. ~5!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10431J. Chem. Phys., Vol. 113, No. 23, 15 December 2000 Finite difference algorithms. II
Notice, that the expansion coefficients are the exact func
values at the chosen grid points.

The transformation from FBR to the cardinal basis se
unitary and the new basis is given in terms of the old one

uj~x!5(
i 51

N

^f i uuj&f i~x!, j 51, . . .N. ~6!

A common procedure now is to evaluate the matrix eleme
^f i uuj& by Gaussian quadrature, such that the integral
comes exact for a polynomial-type basis. A number of d
ferent approximation methods can be obtained by defin
different basis functions and quadrature rules.20,21 In general,
using thed-Kronecker property ofuj (x) @Eq. ~4!# we can
write

^f i uuj&5 (
k51

N

wkf i* ~xk!uj~xk!5wjf i* ~xj !, ~7!

where the grid pointsxk and the corresponding weightswk

depend on the chosen quadrature rule. A widely used se
basis functions in the solution of the Schro¨dinger equation is
the Fourier set

f j~x!5
1

A2p
exp~ i2p jx/L !, ~8!

where L is the length which defines the periodicity of th
function andj 52M , . . . ,0, . . . ,M . We can transform thes
functions to a set of cardinal functions by using a unifo
grid in x with an odd number of points,N52M11, and
employing Chebyshev quadrature. This results in thereal
trigonometric series3,20

uj~x!5
wj

2p F112(
k51

M

cos~2pk~x2xj !/L !G . ~9!

The weights are equal towj5L/N for Chebyshev quadra
ture. Assuming for simplicity thatx is an angular variable
with periodL52p, and using the trigonometric identity

1

2
1 (

k51

M

cos~ka!5
sin@~M11/2!a#

2 sin~a/2!
, ~10!

Eq. ~9! gives the Fourier cardinal functions

uj~x!5
sin@N~x2xj !/2#

N sin@~x2xj !/2#
. ~11!

The d-Kronecker property can be immediately checke
and we can derive analytically the derivatives of the wa
function C(x) when it is expanded in the cardinal function
uj (x) @Eq. ~5!#:

dmC~x!

dxm U
x5xk

5(
j 51

N

bk, j
(m)C~xj !, ~12!

with bk, j
(m) themth derivative ofuj (x) evaluated atx5xk . In

Appendix I we give the first and second derivatives of t
Fourier cardinal functions,uj (x), for periodicities L
5p, 2p.

We can understand the correspondence between Fo
cardinal functions and finite differences by recalling a re
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
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tion between the Fourier cardinal basis and the sinc bas
Fourier cardinal basis can be seen as a sum of sinc b
functions repeated periodically with periodicity 2p, i.e.,

sin@N~x2xj !/2#

N sin@~x2xj !/2#
5 (

k52`

k5`

sinc@~x2xj12pk!/Dx#, ~13!

Dx52p/N in this case and we have used the fraction exp
sion p/sin(px)5(k52`

k5` (21)k/(x1k).22 Since sinc functions
are the infinite order limit of an equispaced FD, the cor
spondence now is thatperiodically repeatedFD stencils will
tend to the PS limit of Fourier functions as the number
grid points in the stencil approaches the total number of g
points in one period. Also, because equispaced FD can
considered as a robust sum acceleration scheme of a
function series, we expect the same convergence prope
of the FD approximation to the Fourier series as the one
found for radial variables in Paper I.

To demonstrate this we used a simple model, which
however instructive since it appears in many vibration
Hamiltonians with azimuthal symmetry: a one-dimension
rigid-free rotor, represented by the Schro¨dinger equation
(0<f,2p),

2
\2

2mr 2

d2C

df2 5EC. ~14!

The exact eigenfunctions and eigenvalues areCm(f)
5(1/A2p)eimf andE5\2m2/2mr 2, m50,61,62, . . . , re-
spectively. Notice that a numerical solution using Four
functions is exact in this case, and so the pseudospe
solution with Fourier cardinal functions, since they have t
form of a cosine series and the Chebyshev quadratur
evaluate the transformation matrix Eq.~7!, is also exact. A
FD should also converge to the exact result but faster t
the cosine series.

By representing the wave function inNtot grid points and
evaluating the second derivatives by interpolating the fu
tion with stencils ofN-points (3<N<Ntot) the kinetic en-
ergy nonzero matrix elements have the form

Tk, j52
\2

2mr 2 bk, j
(2) , 1<k<Ntot and 2M< j 2k<M ,

~15!

whereN52M11.
We applied both methods, Fourier-DVR with weigh

bk, j
(2) given in the Appendix, and variable order FD approx

mations with periodic boundary conditions by choosing t
grid points as

f i5H fN1 i i ,1,

f i 2N i .NJ . ~16!

The weights needed in the FD method are compu
with Fornberg’s algorithm.23 This is an efficient algorithm to
compute any derivative, at any order and at arbitrarily spa
grid points. Details can be found in Fornberg’s book.3 In Fig.
1 we show the decimal logarithm of the fractional err
(Eapp/Eex21) for the eigenvaluem5120 using FD ap-
proximations of increasing order~solid line!. TheM th order
approximation means that we use stencils ofN52M11
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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points. For comparison in Fig. 1 we plot the result of tru
cating the Fourier cardinal basis~dashed line!. This means
that we do not use the total set of grid points (Ntot) to rep-
resent the wave function but a subset ofN, which is also the
size of the stencil in FD. We employed a grid ofNtot581
points, so that the firstm540 eigenvalues are exactly calc
lated~notice that they are doubly degenerate!. The important
point here is that we can accurately represent an eigenv
in the medium range of the spectrum by using significan
less grid points than the required in the pseudospectral
proximation. Truncation of the PS series with even only
few points less than the full series results in significant
rors, but we need only half of the grid points for the exa
solution with FD.

B. Periodic nonuniform grids

In Hamiltonians describing vibrational motions of mo
ecules, it is customary to find the polar angle dependent
erator as

2
\2

2mr 2 S d2

du2 1cotu
d

du D , ~17!

with 0<u,p. There have been several adaptations of
Fourier–PS method for this particular operator,24,25 however
it is not very efficient since the singularities atu50 andp
can cause numerical instabilities. For instance, one usu
has to resort to shifting and symmetrically extending the g
aroundu5p,24,25 and constructing explicitly unitary propa
gators for stable propagation in time. The instability com
also from the fact that the transformation, Eq.~7!, is not
unitary in the polar angleu for Fourier functions.26

The optimum DVR methods to be used with this ope
tor are those which employ trigonometric orthogonal po
nomials of Legendre- and Chebyshev-type as the finite b
representation. Since the argument of these polynomia
x5cosu, the Hamiltonian operator takes the form

FIG. 1. Decimal logarithm of the fractional error (Eapp/Eex21) for the
eigenvaluem5120 of the Hamiltonian, Eq.~14!, usingNtot581 grid points
between 0 and 2p: FD approximation~solid line!; truncation of the Fourier
cardinal basis~dashed line!. We used the parametersm51, r 51 in a.u., and
the orderM corresponds to stencils withN52M11 grid points.
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
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2
\2

2mr 2 F ~12x2!
d2

dx2 22x
d

dxG , ~18!

and the singularity is eliminated.
Using an orthogonal polynomial basis in Eqs.~6! and

~7!, fk5Pk , to obtain the cardinal basis functions, we ta

uj~x!5wj (
k51

N

Pk~xj !Pk~x!, j 51, . . .N. ~19!

xj are the zeros of the polynomialPN11 of degreeN. Notice,
that in Eq.~19!, the summation starts from 1 which corre
sponds to the constant term in the polynomial. Hence,PN

denotes a polynomial of degreeN21. The d-Kronecker
property of the cardinal functions is satisfied by t
Christoffel–Darboux theorem for orthogona
polynomials.7,27 To show that the FD formulas are also th
limit of orthogonal polynomial expansions in DVR method
we have to establish the equivalence between the DVR fu
tions, Eq.~19!, and the Lagrange fundamental polynomia
L j (x), of orderN21.

First we note, that by the definition of Gaussian quad
ture,L j (x) satisfy the orthogonality property

E
a

b

Li~x!L j~x!dx5wjd i j , i , j 51,2,. . . ,N, ~20!

if they are evaluated at the zeros of some orthogonal p
nomial. Then, an expansion of a functionF(x) in orthogonal
polynomials can be represented with the series

F~x!'(
k51

N

FkPk~x!, ~21!

where the coefficients are

Fk5E
a

b

F~x!Pk~x!dx, ~22!

and therefore,F(x) can be defined through the integral

F~x!5E
a

b

F~xj !KN~xj ,x!dxj . ~23!

The kernelKN(xj ,x) is defined by

KN~xj ,x!5 (
k51

N

Pk~xj !Pk~x!. ~24!

On the other hand, expandingF(x) in terms of Lagrange
fundamental polynomials, Eqs.~1! and ~2!, we obtain

F~x!5 (
k51

N

F~xk!Lk~x!

5E
a

b

F~xj !wj
21(

k51

N

Lk~xj !Lk~x!dxj , ~25!

taking into account the orthogonality relation, Eq.~20!.
Since, the kernels in Eqs.~23! and ~25! must coincide, we
have that
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ly
o

u

n

s

e-
is

in

-

th
ri
sa

a
e
p
p

(
f
d

in
e-

th
F
e

hi
th
nd
la
d

d

ed
in a

tri-
ee-
ra-
nd
pi
e
the

er-
O
a-

ten-

tal

ith

10433J. Chem. Phys., Vol. 113, No. 23, 15 December 2000 Finite difference algorithms. II
L j~x!5wj (
k51

N

Pk~xj !Pk~x!, ~26!

using thed-Kronecker property ofL j (x). Hence, we have
shown that when we use theN roots of thePN11 polynomial
as interpolating grid points, the Lagrange fundamental po
nomials are the cardinal functions that correspond to the
thogonal polynomialsPk(x), k51, . . .N.

We experimented with several grid distributions to n
merically solve the eigenvalue equation

2
\2

2mr 2 S d2

du2 1cotu
d

du DC5
l ~ l 11!

2mr 2 C. ~27!

First, we tried a uniform grid distribution inu by means of
Fourier. Although, in this simple case with no potential e
ergy the Fourier basis also gives the exact result@using
slightly different functions than those in Eq.~11!#, since now
the interval inu has periodicityp ~see the Appendix!, the FD
convergence is very poor due to the bad approximation
the borders of the grid, aroundu50 andp. We can think of
it as Lagrange polynomials inu present ‘‘cusps’’ at the bor-
ders of the grid, but the true solutions~Legendre polynomi-
als! are a series in cosu, and therefore, have a smooth b
havior around 0 andp. A much better representation
achieved if we make the transformationx5cosu as men-
tioned above. Notice, that still we can use a uniform grid
u, since, if we choose as grid points

u i5

pS i 2
1

2D
N

, ~28!

and then by making the change of the variable tox @Hamil-
tonian Eq.~18! instead of Eq.~17!#, we have a Chebyshev
DVR method.

The FD implementation can be done in two ways: at
end of the interval, where we need to supply more g
points for calculating the weights than those at our dispo
we can use a mixed centered and one-sided FD scheme
keep the order constant along the grid. That is, we take c
tered FDs until we reach the edge of the grid where we ap
one-sided stencils. The other possibility is to impose the
riodic boundary conditions, Eqs.~16!, in the calculation of
FD weights.

In Fig. 2 we show the results for three eigenvaluesl
510, 20, and 30! calculated with FD for several orders o
approximation,M th, with mixed centered and one-side
stencils defined on the total number of Legendre grid po
Ntot541 ~the roots of the Legendre polynomial of 41st d
gree!. Truncated Legendre-DVR calculations of thel 520
eigenvalue are shown with a dashed line. We remark
there are no noticeable differences by using centered
with periodic boundary conditions or mixed centered, on
sided stencils. We can see the bad convergence for
wave numbers mentioned in the introduction, although
result with FD is much better than truncation for the low a
medium eigenvalues. In Fig. 3 we compare the FD calcu
tions with a Chebyshev grid and periodic boundary con
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
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tions ~solid lines! with those of a Legendre grid and mixe
centered, one-sided stencils~dashed lines!. Practically, the
results are the same.

III. APPLICATION TO SO 2

To explore the performance of the above-describ
methods and the computer codes that we have developed
realistic molecular potential, we have chosen a typical
atomic molecule, sulfur dioxide. Recently, extended thr
dimensional quantum mechanical calculations for the vib
tional levels of this molecule were carried out by Guo a
co-workers14–16 using the spectroscopic potential of Kaup
and Halonen.13 The potential is expressed in terms of th
bend angle and Morse radial variables and reproduces
experimentally observed vibrational levels up to high en
gies. The characteristic of the new vibrational studies on S2

is the size of the calculations. By applying filter diagonaliz

FIG. 2. Decimal logarithm of the fractional error for the eigenvaluesl
510, 20, and 30 of the Hamiltonian, Eq.~27! using FD approximations of
different order in a Legendre grid with mixed centered and one-sided s
cils ~solid lines!. Also the Legendre-DVR result forl 520 using the basis
functions, Eq.~19!, is plotted with a dashed line for comparison. The to
number of grid points used isNtot541.

FIG. 3. The same as in Fig. 2 but using FD on a Chebyshev grid w
periodic boundary conditions~solid lines!. The results with a Legendre
mixed centered, one-sided grid FD are plotted with dashed lines.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tion algorithms,17–19 the researchers were able to compu
about 5000 vibrational levels spanning an energy range u
25 000 cm21. The operation,ĤC, was computed by dis
cretizing the Radau coordinates in sinc-DVR for the tw
stretch modes and in a Legendre grid for the bend mo
Introducing symmetrized stretch coordinates the maxim
grid was (60360) points and for the angle 180 points. St
tistical analysis of the energy level spacing distributio
showed largely regular behavior.15,28–31

The purpose of our calculations is not to reproduce
eigenvalues of Ma and Guo15 but instead to propagate i
time wave packets on the same potential function for tes
the accuracy and stability of FD methods described in
previous section. Thus, we solve the time-dependent Sc¨-
dinger equation

i\
]C~ t,qW !

]t
5Ĥ~qW !C~ t,qW !. ~29!

The vectorqW denotes, collectively, the Jacobi coordinat
R,r , andu, which describe the internal motion of the mo
ecule;R is the distance from S to the center-of-mass of O2,
r is the distance between the two oxygen atoms, andu the
angle betweenR and r :

Ĥ52
\2

2mR

]2

]R22
\2

2m r

]2

]r 2

2
\2

2 S 1

mRR2 1
1

m r r
2D S ]2

]u2 1cotu
]

]u D1V~R,r ,u!,

~30!

where,mR andm r are the reduced masses for S–O2 and OO,
respectively.

The initial number of grid points for the three variabl
is Ntot564 or 128 points in each dimension. The 128-po
grids would require vectors of more than two million el
ments if cubic grids had to be used. However, taking i
account that the wave function is zero at those grid po
where the potential value is higher than a threshold, we s
only a fraction of them, thus reducing substantially the s
of the arrays. The energy cutoff was taken at 3 eV but so
results were checked with 4 eV as well.

For the stretchr coordinate, uniform equispaced grid
are used. The energy to linearize the molecule is more th
eV, higher than the energies we have considered. Thus
assume that the wave function is zero atR50 and apply
equispaced uniform distributions for this coordinate. Nev
theless, tests with mixed centered, one-sided stencils are
examined. For the angle variable we take uniform, equ
paced grids with zero boundary conditions as well as Che
shev and Legendre grids with periodic boundary conditio

The time-dependent Schro¨dinger equation was numer
cally solved using a Chebyshev expansion9 for the time
propagator. Two initial Gaussian wave packets are cho
which we label ~wp1!, with center at R50.915 Å,
r 52.4768 Å, u590°, and potential energyE50.7480 eV,
and the wave packet~wp2! with center R51.015 Å,
r 52.4768 Å, u590°, and potential energyE51.5708 eV.
The widths for both Gaussians weresR50.05 Å21,
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s r50.05 Å21, and su50.08 rad21. Both wave packets are
symmetric with respect to the lineu590° and with the OO
bond at its equilibrium value. Hence, we expect excitation
the symmetric stretch and bend states but no excitation of
antisymmetric states.

From the time propagation of the initial wave pack
we calculate the autocorrelation function,C(t)
5^C(0,qW )uC(t,qW )&, the Fourier transform of which reveal
the eigenstates which overlap with the initial wave pack
The stability in the time propagation was checked by
norm of the wave packet, which should be one for an init
normalized function, and the conservation of the total e
ergy. Both quantities should be conserved for bound m
tions. The imaginary part of the energy was also printed
as an indicator of the stability and accuracy of the calcu
tion.

Calculations have been performed with variable ord
FD and several grid distributions which are denoted with
symbols,~u! for centered, equispaced stencils,~m! for mixed
centered and one-sided stencils,~l! for Legendre, and~c! for
Chebyshev grid points. Thus, the triad~luu!, for example,
denotes that Legendre points were used for the bend coo
nate and centered, equispaced grids for theR and r stretch
coordinates, respectively. All calculations were perform
with PCs of 450 MHz and 512 MBytes memory.

In Tables I and II we show the relative errors in the no
and energy after propagating the wave packets, wp1
wp2, respectively. The time evolution was for 1.14 or 2.
ps. FFT calculations are also presented for a cubic grid w
64 points in each dimension. From Tables I and II we can
that FFT preserves the norm and the energy at the third d
mal point. In the finite difference approximation, the orderM
corresponds to stencils withN52M11 points. We find no
significant differences between Chebyshev and Legen
grids for the angle variable. Increasing the number of g

TABLE I. Conservation of the norm (Nt) and total energy (E) for several
order finite difference approximations during the propagation of wa
packet wp1~see text!. The grid distributions in (u,R,r ) are denoted with the
symbols,~u! for centered, equispaced stencils,~m! for mixed centered and
one-sided stencils,~l! for Legendre, and~c! for Chebyshev grid points. The
imaginary part of the energy is the value at the end of the iterations.

iterations are counted by the total number ofĤC operations. The total run
times are 1.14 ps for the grids of 64 points and 2.03 ps for the grids of
points. The numbers in parentheses are the power of ten.

Method Grid Points
Nt

N0
21a

E

E0
21b Imaginary ĤC

FFT uuu 64 1.4(23) 1.7(23) 3.8(26) 342016
FD-2 cuu 64 1.0(27) 1.5(27) 1.7(29) 90112
FD-4 luu 64 1.0(27) 1.1(27) 21.5(29) 90112
FD-7 cuu 64 1.0(28) 5.3(28) 23.6(210) 61440
FD-12 cuu 64 1.0(28) 4.2(28) 21.1(29) 61440
FD-2 uuu 128 1.0(28) 1.0(28) 24.4(213)c 538624
FD-2 cuu 128 1.0(28) 2.1(28) 1.8(210) 223232
FD-4 cuu 128 1.0(28) 1.1(28) 6.2(211) 221184

aN0 is the norm at timet50, andNt the norm at the end of iterations.
bE0 is the total energy at timet50, andE the energy at the end of iterations
cThe accuracy of the norm and energy is higher than 1.031028 which is
printed out.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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points to 128, the imaginary part of the energy decrea
even for low order approximations. As has been shown
Paper I, higher accuracies are achieved either by increa
the order of approximation or the number of grid poin
Finally, we point out that mixed centered and one-sided g
lead to larger instabilities as the order of approximation
creases. Taking a uniform grid for the angle in a sma
interval than@0,p# we obtain a representation of the wa
function with more grid points, and that explains the lar
number ofĤC operations for the~uuu! grids in Tables I and
II. Overall, we have found that centered equispaced g
give the most stable and accurate results.

Part of the spectrum is shown in Fig. 4. The dashed li
correspond to the eigenenergies published by Ma and G15

FIG. 4. Comparison of some eigenenergies obtained by Ma and Guo~Ref.
15! ~dashed lines! and finite difference at second-order on a~uuu! grid and
128 initial points for each coordinate. The numbers at the top denote
quantum numbers for the theR-stretch, bend, andr -stretch, respectively.

TABLE II. Conservation of the norm(Nt) and total energy (E) for several
order finite difference approximations during the propagation of w
packet wp2~see text!. The grid distributions in (u,R,r ) are denoted with the
symbols,~u! for centered, equispaced stencils,~m! for mixed centered and
one-sided stencils,~l! for Legendre, and~c! for Chebyshev grid points. The
imaginary part of the energy is the value at the end of the iterations.

iterations are counted by the total number ofĤC operations. The total run
times are 1.14 ps. The numbers in parentheses are the power of ten.

Method Grid Points
Nt

N0
21a

E

E0
21b Imaginary ĤC

FFT uuu 64 1.3(23) 1.4(23) 1.9(26) 260096
FD-2 cmu 64 1.0(28) 1.0(28) 28.3(210) 59392
FD-4 cmu 64 1.0(28) 5.8(28) 4.0(210) 59392
FD-7 uuu 64 1.0(28) 1.0(28) 2.7(213)c 153600
FD-7 cuu 64 1.0(28) 1.0(28) 6.7(211)c 61440
FD-9 cuu 64 1.0(28) 1.0(28) 3.4(210)c 61440
FD-9 luu 64 1.0(28) 1.0(28) 25.5(211)c 61440
FD-2 cuu 128 1.0(28) 1.0(28) 23.2(211)c 159744
FD-7 cuu 128 1.0(28) 1.0(28) 3.1(212)c 157696

aN0 is the norm at timet50, andNt the norm at the end of iterations.
bE0 is the total energy at timet50, andE the energy at the end of iterations
cThe accuracy of the norm and energy is higher than 1.031028 which is
printed out.
Downloaded 19 Dec 2002 to 139.91.254.18. Redistribution subject to A
es
n
ng
.
s
-
r

s

s

and the labels at the top of the figure are the assigned q
tum numbers for theR-stretch, bend, andr -stretch, respec-
tively. The spectrum was obtained with the wave pac
wp1, and with a second-order FD on a~uuu! grid of 128
initial points for each coordinate. Obviously, techniques su
as filter diagonalization must be applied for an accurate
termination of the eigenlevels. Here, it is not our purpose
extract exact eigenvalues, but rather to investigate the sta
ity of finite difference approximations in the time evolutio
of wave packets. It should be emphasized that symm
considerations which speed up ordinary DVR calculatio
could also be applied in FD methods.

In Fig. 5 we compare the correlation functions of th
wp2 wave packet calculated with second-order FD on a~cuu!
grid and 128 initial points~solid line!, seventh-order FD with
a 64 ~cuu! initial grid ~dashed line!, and the FFT on a 64
orthogonal grid~dotted line!.

In Fig. 6 we compare the power spectra in the ene
interval of 1.5 to 1.7 eV obtained after propagating the w
for 4.17 ps and using fourth-~dotted line!, fifth- ~dashed

e

FIG. 5. Correlation functions calculated with the initial wave packet wp2
second-order FD approximation on a~cuu! grid and 128 initial points~solid
line!, seventh-order FD with a 64~cuu! initial grid ~dashed line!, and the
FFT on a 64 orthogonal grid~dotted line!. The time unit is 0.010 180 44 ps

FIG. 6. Convergence of the power spectra obtained with wave packet
and fourth-~dotted line!, fifth- ~dashed line!, and ninth-~solid line! order FD
on a 64~cuu! grid. Higher order approximations give peaks which coinci
with that of ninth-order.

e

e
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Downloaded 19 D
TABLE III. The intensities of the four more intense peaks of Fig. 6 at high order FD approximations
propagating wp2 for 4.17 ps on 64~cuu! grid.

Energy FD-9 (31023) FD-11 (31023) FD-13 (31023) FD-15 (31023)

1.551 52 0.221 029 0.232 002 0.235 093 0.236 147
1.612 03 0.173 382 0.169 127 0.167 414 0.166 750
1.623 93 0.135 979 0.127 174 0.124 286 0.123 204
1.685 44 0.218 233 0.237 179 0.242 576 0.244 425
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line!, and ninth-~solid line! order FD on a 64~cuu! grid. For
higher order approximations the peaks have been conve
within the Fourier transform resolution~0.001 eV!. In Table
III we show how the intensity varies for four peaks by i
creasing further the order of approximation.

Finally, in Fig. 7 we plot the wave packet wp1 aft
integrating for 1.54 ps with second-, fourth-, seventh-, a
twelfth-order FD approximations on a 64~uuu! grid. The
projection of the wave function on the (u,R) plane inte-
grated over ther coordinate is shown. We can see, that
converged wave functions we must use high order FD.

IV. CONCLUSIONS

Variable high order finite difference algorithms for ca
culating the derivatives in a molecular Hamiltonian ha
been studied and tested for stability and accuracy by solv
the time-dependent and time-independent Schro¨dinger equa-
tion with angular variables. Relations of high order FD lim
to Fourier and orthogonal polynomial discrete variable r
resentations have been analytically established and num
cally investigated. The importance of these limits is that,
using a single code to generate the FD weights, we can
tematically explore a variety of different approximatio
ranging from low order FD to sinc, Fourier, and orthogon
polynomial DVR, simply giving different grid distributions
as input and imposing the proper boundary conditions. H
we have examined centered and mixed centered, one-s
uniform grids, as well as Chebyshev and Legendre perio
grids. From the applications we have made up to now
find that the centered equispaced grids give a good repre

FIG. 7. Projections of the wave packet wp1 after integrating for 1.54 ps w
second-, fourth-, seventh-, and twelfth-order FD approximations. Dista
in Å and angle in radians.
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tation of the wave function and result in stable time prop
gation. Particularly, for SO2 with a triangular equilibrium
geometry, a uniform grid in a proper interval gives a bet
representation of the wave function than the Legendre
Chebyshev grid with points accumulated at the end of
interval. Finally, mixed centered, one-sided stencils of h
order approximations lead to instabilities. We find practica
the same results using either Legendre or Chebyshev
points.

From Paper I and this work the following advantages
the FD approach in solving the Schro¨dinger equation
emerge:

~1! finite differences allow a systematic search of the co
vergence properties with respect to the number of g
points as well as the order of approximation of the d
rivatives;

~2! we can use a large number of grid points for better r
resenting the wave function and save computer time
memory by employing low order approximations;

~3! finite differences with stencils equal to the total numb
of grid points are equivalent to the most common
methods~sinc, Fourier, Chebyshev, Legendre!;

~4! truncated PS methods are generally bad approximat
whereas finite differences show smooth convergence
havior by increasing the order;

~5! there is flexibility in choosing the grid points withou
necessarily any dependence on specific basis functio

~6! algorithms for a fast generation of the weights in the F
approximations of the derivatives by recursion relatio
are available; and

~7! the computer codes can be parallelized.

Further work on tetratomic molecules is in progress.
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APPENDIX

For completeness of the article we provide here the
efficients bk, j

(m)5dmuj (x)/dxm ux5xk
for obtaining the first

(m51) and second (m52) derivatives of the Fourier cardi
nal basis functionsuj (x) @Eq. ~11!# and with periodicityL.
Similar equations were first extracted by Meyer32 and later
on by Colbert and Miller:5

h
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bk, j
(1)55

2p

L
~21! l /~2sin~ lp/N!! l 561,62, . . .

~616N!,~626N! . . . periodically extended

0 l 50,6N,62N, . . .
6 ~A1!

with l 5 j 2k, and

bk, j
(2)55

S 2p

L D 2

~21! l 11cos~ lp/N!/~2sin2~ lp/N!! l 561,62, . . .

~616N!,~626N! . . .

S 2p

L D 2 1

12
~12N2! l 50,6N,62N, . . .

6 . ~A2!
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